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All the abstract ten-dimensional real Lie algebras that contain as a subalgebra the algebra of 
the three-dimensional rotation group (generators J) and decompose under the rotation group 
into three three-vector representation spaces (J itself, K, and P) and a scalar (generator H) 
are classified. In all cases, the existence of a homogeneous space of dimension 4 is shown. 

I. INTRODUCTION 

In this short note we want to present results that were 
obtained almost 20 years ago and that extend the classifica­
tion of all kinematical groups obtained by one of the authors 
(H. B.) in collaboration with Levy-Leblond. I 

A kinematical group is a ten-parameter group preserv­
ing the isotropy of space. The physical interpretation of the 
transformations is rotations (three generators J), inertial 
transformations (three generators K), space translations 
(three generators P), and time translations (generator H). 
Space isotropy, a quite natural hypothesis, implies that the 
generators transform correctly under rotations, i.e., H must 
be a scalar and J, K, and P must be vectors, a property ex­
pressed by the commutation relations 

[J,J] = J, [J,P] = P, 

[J,K] =K, [J,H] =0, 

where [A,B] = C is a shorthand for 

[AjOBj ] = Ejjk Ck 

and E jjk is the antisymmetric Kronecker product. 

(1.1 ) 

( 1.2) 

Here we classify all the abstract ten-dimensional Lie al­
gebras satisfying (1.1). This problem is more general than 
the one solved in Ref. 1. Indeed Eqs. (1.1) are invariant 
under the involutions 

J'=aJ, K'=EK, 

P' = uP, H' =8H, 
(1.3 ) 

where E, u, and 8 are arbitrary signs2 and a = 1. 
In Ref. 1 the two following conditions were imposed. 
(i) Parity 1T and time reversal". defined by 

1T: E = - 1, U = - 1, 8 = 1 , 

".: E = - 1, U = 1, 8 = - 1 , 

(1.4) 

( 1.5) 

were supposed to be (involutory) automorphisms of the al­
gebras. 

(ii) The K's generate noncompact subgroups. 
The first condition defines the three vector spaces corre­

sponding to J, K, and P uniquely since they behave different-

0) Laboratory associated with CNRS. 

ly under parity and time reversal. Unambiguous physical 
interpretations of the corresponding kinematical algebras 
followed. All the Lie algebras obtained were the two de Sitter 
Lie algebras [so(3,2) and so(4,1)] and all their isotropic 
contractions. 3 

Since, in the present work, we do not impose parity and 
time reversal invariance, the subspaces spanned by P and K 
are no longer uniquely defined. Transformations of the type 

P' = xP + yK + zJ , 

K'=x'K+y'P+z'J, 

where x, y, z, x', y', and z' are real and 

xx' -yy';fO 

are allowed. We also use 

H' = wH, w;fO, 

to put each algebra in a simple form (w real). 

( 1.6) 

( 1.7) 

( 1.8) 

Because our classification only deals with Lie algebras, 
no condition concerning global transformations [like condi­
tion (ii) above] is made. 

II. METHOD 
Let us sketch in a few words the straightforward method 

we have used to obtain the classification. 
(a) First we have looked for the complex algebras satis­

fying Eq. (1.1), defined up to transformations of the form 
given in Eqs. (1.6)-( 1.8) with complex coefficients. 

Denoting K j , P j , and J j by X ~ I), X ?), and X ?), respec­
tively, it is then easy to see that, following (1.1), 

def 

AdH(X~A» = [H,xfA)] 

- ~M(A) X(B) 
-~ (B) j , (2.1 ) 

(B) 

where the (3 X 3) -matrix M has its third row entries equal to 
zero. With the aid of transformations (1.6)-( 1.8) the ma­
trix M can be put in one of the following Jordan forms: 

a = diagonal (with zero as an eigenvalue), 
P = one of the five nondiagonal matrices, 
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M·~G D M,~G ° ~). 
° ° 

M,~G !} M·~G ° 
D· ° ° (2.2) 

° ° 
M,~G ° 

D· ° 
° (b) In order to obtain a Lie algebra we have to impose 

all the Jacobi identities. The ones involving the J's are satis­
fied identically as a result of ( 1.1 ). 

It is easy to verify that there is no Lie algebra for the 
cases corresponding to M3 , M4 , and Ms. 

In the case M J we obtain a unique complex algebra, the 
commutators of which are 

[H,P] =P+K, [H,K] =K, (2.3 ) 

[P,P], [P,K], and [K,K] being zero. 
The matrix M2leads to two distinct complex Lie alge­

bras, the Galilei and the Poincare ones. 

TABLE I. Deformations of the static algebra. 

When the matrix M is diagonal, as a result of the Jacobi 
identities, we have to distinguish between the following sets 
of eigenvalues of M: 

A (I) = {O,O,O}, 

A (2) = {I,O,O} , 

A (3) = {I,I,O}, 

A (4) = {I,2,O} or {q,O} , 

A (S) = {I, - I,O} , 

A (6) = {I,O,O}, ° ¥:2,q,O, - 1 , 

where ° can be complex. The first set of eigenValues corre­
sponds to the static and Carroll-Lie algebras, J the fifth set to 
the de Sitter and Newton-Lie algebras. 

The procedure just defined leads us to 16 complex non­
isomorphic algebras together with an infinite family of non­
isomorphic algebras parametrized by ° in the sixth set of 
eigenvalues. 

(c) It is then a simple matter to derive the real forms of 
those complex Lie algebras. The results are given in Table I 
and discussed in the next section. If we discard the well­
known cases of de Sitter (three real forms), Poincare (two 

[HP]=P [HP]=P [HP]-K de de 
[HP}"P+K [KK}-K [HP]-P [HK]=2K [HK]-xK 
[Hl<}"K [pp]-±(l<-J) [KK]-K (PP]=K 1 

x",,2.1· 2 ·O.-1 

11 

[HP]"P 

[HK]=K 

11 
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4 11 

(HP]=P 

[HK]=2K 

11 3 

Galilei 

[HK]=P 

11'[* 2 

Static 

3 

Newton 

(HP]=K 

(HK]=-P 

lIT* 3 

[HK]=-P+yK Sitter Sitter 

0</<4 so(3.2) so(5) so(4.1) 

11 3 lit 4 liT 4 liT 4 

Newton 

[HP]=P Poincare 

(HK]=-K iso(3.1) iso(4) 

lIt* 3 lit 3 lit 3 

Carroll 

(PK}=H 

. liT 
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real forms), and Newton (two real forms), all the other 
complex algebras have only one real form except: (i) the 
ones associated with the sixth set for which two real forms 
depend on a continuous parameter and (ii) one Lie algebra 
associated with the first set which has two real forms. 

III. RESULTS AND CONCLUSIONS 

In Table I each box represents a Lie algebra except three 
boxes representing one discrete and two continuous families 
of algebras. The commutators ( 1.1 ) are valid for all of them. 
The different algebras are described by their non vanishing 
other commutators except for so (5), de Sitter, Poincare, and 
the inhomogeneous soC 4) for which the commutation rela­
tions are not given but are well known. Adjacent boxes cor­
respond to real forms of the same complex algebra. Lines 
describe all possible contractions3 between these algebras. 

Defining the static Lie algebra as that one for which all 
the commutators are zero but the ones of ( 1.1), the listed 
algebras represent all possible isotropic deformations (the 
inverse of contractions) of the static algebra. 

The symbol * means that there exists a nontrivial central 
extension,4 11' means that there exists an involutory automor­
phism of the parity form ( 1.4 ), and 7' means that there exists 
an involutory antiautomorphism of the time reversal form 
( 1. 5). Clearly those for which 11' and 7' appear together are 
the ones which were classified in Ref. 1. By a regular change 
of basis (1.6 )-( 1.8) with real coefficients, each algebra can 
be written in the form 

2457 

[P,P] = aP + P K + yJ , 

[K,K] =a'K+p'P+y'J, 

[H,P] =aP+bK+cJ, 

[H,K] =a'K+b'P+c'J, 

[P,K] =p,J +pH, 
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(3.1 ) 

where, in the last commutator, p is written for p6ij. The 
coefficients {a, ... , p} depend on n arbitrary, independent, 
and continuous parameters. This number n is given for each 
algebra. In particular it should be noted that through a regu­
lar change of basis the roles ofK and P can be interchanged. 

It is one of the surprising results that every Lie algebra 
has at least one subalgebra of dimension 6 (generated by J 
and some combination ofK and P), a fact which allows the 
construction of homogeneous space of dimension 4, the 
"space-time" associated with that algebra. 
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A singular point analysis (Painleve test) for certain special cases of Nahm's equations is 
performed. It is shown that there are cases in which the equations do not pass the test. The 
Laurent expansion does not contain the right number of arbitrary expansion coefficients. 
Nevertheless the systems under consideration are completely integrable. 

I. INTRODUCTION 

The Nahm equations arise in Nahm's construction of 
monopole solutions in Yang-Mills theory. 1-6 Let T\> T2, and 
T3 be n X n matrices of complex-valued functions of the vari­
able t. The Nahm equations are given by 

dTI = [T2' T3 ], (la) 
dt 

(lb) 

(lc) 

where [ , ] denotes the commutator. Thus we have an au­
tonomous system of 3n2 ordinary differential equations. The 
system is scale invariant under t---+a-It, ~,nm---+a~.nm' The 

Lax representation can be found as follows7.8: Let U and V 
be two vectors (U = (U\>U2,U3 ), V = (V\>V2,V3») with 
UU T = 1 and V = V X U (X cross product). Then the sys­
tem (1) can be written as (Lax representation) 

d(V· T) = [V. T, U. T], 
dt 

(2) 

where V· T = VI TI + V2T2 + V3T3' Consequently, 
Tr( ( V· T) k) are the constants of motion. 

In the present paper we study the connection with the 
Painleve test (compare Ref. 9 and references therein). Four 
special cases are discussed. In two of the cases the system 
passes the test, whereas in the remaining two the test will not 
be passed. In all cases the connection with (algebraic) inte­
grability is discussed, where we apply Yoshida's theo­
rems. IO•II 

II. YOSHIDA'S THEOREMS 

For our discussion we use the theorems ofYoshida. IO
•
11 

These theorems can be applied since the system (1) is scale 
invariant (that is, similarity invariant). 

Theorem 1: In order that a given similarity-invariant 
system dx;ldt=F;(x), (i= 1, ... ,N) be algebraically inte­
grable, it is necessary that every possible resonance (that is, 
Kowalewski's exponent) becomes a rational number. 

In other words, if there exists at least one irrational or 
imaginary Kowalewski's exponent, the similarity-invariant 
system is not algebraically integrable. For n = 2 and n = 3 
we find for the Nahm's equations ( 1) that the resonances are 
all integers. We conjecture that also for higher n's the reson­
ances are integers. Since the system is similarity invariant 

there is a set of rational numbers ml, ... ,mN such that the 
system is invariant under the similarity transformation 

t---+a-It, XI---+am'XI, ... ,xN---+amNxN, for a constant a. In the 
present case we have m I = ... = m N = 1. Any similarity-in­
variant system dx;ldt = F; (x) has, in general, a special type 
of particular solution xl(t) =CI(t-ll)-m', ... ,xN(t) 

= cN(t - t l ) - mNwith constants CI,,,,,CN to be determined. 
Suppose that the similarity-invariant system has a polyno­
mial first integral h(xl, ... ,xN)' Consequently, 

h(am'XI, ... ,amNxN) is again a first integral. We define that a 
polynomial¢(xl, ... ,xN ) is a weighted homogeneous polyno­
mial of weighted degree r when ¢ is multiplied aT by the 

similarity transformation or the identity ¢(am'xI, ... ,amNxN) 

= aT¢(xl, ... ,XN ) holds for arbitrary x and a. 

Let us now give two theorems 10.1 I which are helpful to 
find the first integrals (if any exist). 

Theorem 2: Let h be a weighted homogeneous first inte­
gral of weighted degree r for the similarity invariant system 
dxJdt = F; (x). Assume that the elements of the vector 
grad h (c) are finite and not identically zero for a fixed 
choice of the set CI"",CN in F; (cl, ... ,CN ) = - m;ci> 

(i = 1, ... ,N). Then r is a resonance. 
Theorem 3: Let h I and h2 be two independent weighted 

homogeneous first integrals of the same weighted degree r. 
Suppose that the two vectors grad hi (c) and grad h2 (c) are 
both finite, not identically zero, and these two vectors are 
linearly independent for a fixed choice of CI' ... 'CN. Then ris a 
resonance with multiplicity at least 2. 

It is obvious that Theorem 3 can be extended to three 
(and more) independent weighted homogeneous first inte­
grals of the same weighted degree r. 

Let us emphasize that the algebraic first integrals corre­
spond to resonances which are rational numbers. On the 
other hand not all resonances are related with first integrals 
in completely integrable systems. This demonstrates the fol­
lowing example. Let 

H(p,q) = pi!2 + pV2 + V(q), 

where 

V(q) =qV5+2qfq~ +qlq~· 

Then, besides H, we find the first integral 
h(p,q) =PIP2 + q~q2 + 2qiq~ + q~/5. From Theorem 2 
we find that Hand h correspond to the resonance r = .If. The 
other resonances (besides r = - 1) are r = j and r = j. 
Moreover we see that the resonances need not be integers in 
order that a system be completely integrable. 
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III. EXAMPLES 

Let us now study our special cases of the Nahm equation 
(1). In our first example we put 1j (t) = ~ (t)CTj , where CTI, 
CT2' and CT3 are the Pauli matrices. Then we find 

il = - 2J;h, i2 = - 2fd3' i3 = - 2fd2' (3) 

The Painleve test for this system has been already performed 
in literature. 12 The system passes the test. The dominant be­
havior is given by fl(f) O:T-I, J;Ct) O:T- I, h{t) O:T- I, 
where T = t - to' Since the system is scale invariant it fol­
lows that fl{t) =OT-I, f2{t) =bT-1, f3(1) =CT- I is a 
solution to the system (3) where 0 = 2bc, b = 2ac, C = 2ab. 
The resonances are given bY'1 = - 1"2 = 2(twofold). The 
resonance, = 2 (twofold) is related to first integrals given 
byhl(f) =fi -j~ andh2(j) =fi -j~.Sincetheequa­
tions of motion are scale invariant under t-+a -I t, /;-+a/;, 
we have hi (ajl' aJ;) =a2h l (jl,J;) and h2(ajl,aJ;) 
= a 2h2 (fl,J;) (Theorem 3). 

Consider now system (1) with n = 2 and assume that 
the Tj.}k·S are real-valued functions. Then the first integrals 
are given by 

hl(T) = TI,ll + T I,22' (4a) 

h2(T) = T2,ll + TZ,22' (4b) 

h3(T) = T3,ll + T3,22' (4c) 
3 

h4 (T) = L TJ,12' (4d) 
}= I 

3 

hs(T) = L TJ,21' (4e) 
}=I 

3 

h6( T) = TI,12 T I,21 - TI,ll T I,2Z + L 1j,1l1j,22' (4f) 
}= I 

3 

h7( T) = T2,12 T2,21 - T2,1l T2,22 + L 1j,1l 1j,22 , (4g) 
}=I 

3 

hg(T) = T3,I2 T3,21 - T3,ll T3,22 + L 1j,ll1j,22' (4h) 
}=I 

The system (1) (n = 2) can be solved by quadrature with 
the help of these eight first integrals. For the singular point 
analysis we consider the system in the complex domain. The 
dominant behavior is given by 

(

Cj'll T-I Cj,12T-I) 

Tj(t) = , 
Cj,21 T- I Cj,22 T- I 

(5) 

where 
1 3 3 

Cj = -- L L Eijk[C},Ck ]. 
2 j=lk=1 

(6) 

For the resonances we find 'I = - 1, '2 = 0 (threefold), 
'3 = 1 (threefold), and '4 = 2 (fivefold). The resonance 
'3 = I (threefold) corresponds to the three first integrals 
given by Eqs. (4a)-(4c). The resonance'4 = 2 (fivefold) 
corresponds to the five first integrals given by Eqs. (4d)­
(4h). 

Our third and fourth special cases are as follows. Let 
{Ha , a = 1, ... ,n - t} be generators of the Cartan subalge­
bra of sl (n) = An _ I , and {E a,E _ a } be step operators satis­
fying 
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[Ra,E±td = ±Ka{JE±fJ' [Ea,E-fJl =6afJRfJ , 
(7) 

where (KafJ) is the (n - 1) X (n - 1) Cartan matrix of 
sl(n). Assume that 

j n-I 

TI(t) =- L qa(t)(Ea +E_ a ), (8a) 
2 a=1 

In-I 

T2(t) = -- L qa(t)(Ea -E_ a ), (8b) 
2 a= I 

in-I 
T3 {t) = - L Pa (t)Ra • (8c) 

2 a= I 

Then the Nahm equations take the form 
1 n-I 

Pa = q~, qa = -2 L pfJKafJqa· (9) 
fJ=1 

Settingfa = 21n qa yields 
n-I 

fa = L KafJ exp(ffJ)' (10) 
fJ=1 

These are Toda molecule equations. Nowletn = 2. The Car­
tanmatrixofsl(2) =A I is given by (KafJ) = 2. Then system 
(9) takes the form P = i, q = pq. This system passes the 
Painleve test and the resonances are given by - 1 and 2. The 
first integral is given by h(q,p) = q2 - p2. Consequently, 
h(aq,ap) = aZh(q,p) which indicates that r = 2 has to be a 
resonance. Now let n = 3. The Cartan matrix is given by 

( 2 -21) (KafJ) = _ 1 

and therefore we obtain 

PI =qi, P2=~' 
ql =ql(PI-P2/2), q2=qZ(P2-PI/2). 

(11) 

(12a) 

(12b) 

Inserting the ansatzPI o:oo(t - t l ) - ml
, P2 0: bo{t - t l ) - m" 

ql o:co(t - t l ) - m" and q2 o:do{t - t l ) - m. we find m l = m2 

= m3 = m 4 = 1 and 00 = bo = - 2, 20 = d ~ = 2. Only one 
branch arises with oo,bo,co,do::;fO. The resonances are given 
by - 1,2,3, and - 2. We obtain a Laurent expansion of the 
form 

00 

PI(t) = L o}(t-tl)}-I, 
}=o 

00 

pz(t) = L b/t - tly-I, 
}=o 

00 

ql(t) = L c}(t-tIY-t, 
}=o 

00 

q2(t) = L d/t - tly-I, 
}=o 

( l3a) 

(13b) 

( l3c) 

(l3d) 

where two expansion coefficients can be chosen arbitrarily. 
The resonance - 1 corresponds to the arbitrariness of the 
pole position in Eqs. (13a) through (l3d). Thus the system 
( 12) does not pass the Painleve test, since in order to pass the 
test three expansion coefficients have to be chosen arbitrar­
ily. Thatthisisnotthecaseisduetotheresonance - 2. Now 
the resonances 2 and 3 are related to polynomial first inte­
grals. In fact we find the first integrals 

(14a) 

and 
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h2(p,q) = PiP2 - PJP~ + Plq~ - P2qi, (14b) 

where hi (ap,aq) = aZhl (p,q) and h2(ap,aq) = a 3h(p,q) 
(Theorem 2). Solution (13) is a Laurent expansion in the 
neighborhood of t l • In literature we sometimes find the re­
mark that negative resonances (like - 2 in the case given 
above) are purely formal. However, the connection is as fol­
lows. Instead oflooking for an expansion of the form ( 13) in 
the neighborhood of t I we consider an expansion of the form 

00 

PI(t) = L a_/ -j-I, 
j=o 

00 

P2(t) = L b -/ -j-I, 
j=o 

00 

ql(t) = L c_/ -j-I, 
j=o 

00 

q2(t) = L d -/ -j-I. 
j=o 

(1Sa) 

(ISb) 

(ISc) 

(ISd) 

This means we study an expansion around infinity. Inserting 
ansatz (13) into system (12) we find that d -I and d _ 2 can 
be chosen arbitrarily. Therefore, expansion (15) contains 
two arbitrary expansion coefficients. 

IV. CONCLUSIONS 

Let dx;! dt = Fj (x) be a similarity-invariant system and 
Ietthe F/s be polynomial (Fj : Rn ---+R). Then the polynomial 
first integrals can be found using the ansatz 

M 

h(x) = '" C XJI' ... x n
Jn

, L J, ···In 
(16) 

il ..... i" = 0 

where M = j I + ... + j n' The coefficients Cj , ... jn are deter­
mined by dh/dt=O [modulo dx;!dt=Fj(x)]. Now the 
Painleve test gives us a restriction on M if we know the domi­
nant behavior and the resonances. In our first example the 
dominant behavior is - 1 and the highest resonance is 2. 
Consequently, M can be restricted to M = 2. In our fourth 
example we find M = 3. 

System (12) does not pass the Painleve test in the sense 
that the Laurent expansion (13) does not contain the right 
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number of arbitrary expansion coefficients. On the other 
hand the system (12) is completely integrable in the sense 
that it can be solved by quadrature using the first integrals 
( I4a) and (I4b) . We find this behavior for n = 4, too. We 
should recall the problem of the motion of a heavy rigid body 
near a fixed point treated by Kovalevskaya. 13 The system is 
described by an autonomous system of six first-order ordi­
nary differential equations. To integrate the system com­
pletely we only need four first integrals. The fourth first inte­
gral imposes conditions on the constants which the system 
enter. 

Finally, we mention that the field theoretical extension 

a2
u. a2

u. ( I ) -+ --+ = exp L kjiU j a, at j= I 
(17) 

of Eq. (10) has been discussed extensively by Ganoulis 
et al.6 Steeb et al. 14 have shown that the equations 
Urr - Utt = eU and Urr - Utt = aeU + be - 2u pass the Painle­
vetest (after the transformation v = eU

) in the sense of Weiss 
et al. 15 

tW. Nahm, "The algebraic geometry of multi monopoles," in Group Theo­
retical Methods in Physics, edited by M. Serdaroglu (Springer, Berlin, 
1982), p. 456. 
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The existence of a first integral of the self-similar equations associated with a given partial 
differential system, in one space dimension, is shown, whenever there exists a conserved 
quantity Q whose scale remains time independent. That result is most conveniently derived 
through the introduction of Y =exp Q as a new unknown. In the case of the Burgers equation, 
the velocity potential <I> has the required property, and the transformation to the new variable 
exp <I> is precisely the Cole-Hopf transform. The latter, as is well known, linearizes the Burgers 
equation. 

I. INTRODUCTION 

Much work has been done recently in the field of nonlin­
ear dynamics to elucidate the connection between the prop­
erty of integrability of a partial differential system, the pres­
ence of a Lie group of symmetry of infinite order, and the 
Painleve property.l-4 The nonlinear equations that exhibit 
solitons have been found to possess the Painleve property, 
and their associated self-similar equations are Painleve equa­
tions as well. 3 

The Burgers equation 

(1.1 ) 

is a well-known example, but it is also very special, as it is 
reducible to a purely linear equation, by a transformation 
known as the Cole-Hopf transform: 

2Yx +vY=0. (1.2) 

The result is the heat equation, as is well known: 

(1.3 ) 

It can be shown that the Burgers equation possesses the 
Painleve property, in the generalized sense of partial differ­
ential equations, as defined by Weiss et al.4

; the associated 
self-similar equations [i.e., the equations giving the homo­
geneous solutions of ( 1.1)] are second-order ordinary dif­
ferential equations (ODE's), which are the fifth canonical 
type, among the 50 types of Painleve equations (Ince, see 
Ref. 5). That type is known to be semi-integrable (i.e., inte­
grable once), 5 and is reducible to a Riccati equation for the 
unknown, z(x). The latter may be linearized by the well­
known transformationy = expSz dx, that is, the self-similar 
analog of the Cole-Hopf transformation. 

In the present paper we show that the semi-integrability 
of these self-similar equations (hereafter, SSE's) is not acci­
dental: it can be predicted in a systematic way in more gen­
eral cases, and it is related to the existence of a conserved 
quantity Q, which has the property that its typical scale re­
mains time independent for the self-similar equations consid­
ered. The semi-integrability becomes manifest through the 
introduction of 

Y=expQ ( 1.4) 

as a new unknown. 
The Cole-Hopf transform is precisely of the type ( 1.4 ) , 

where Q represents the velocity potential. 

II. THE FORMULATION OF CONSERVATION LAWS 

In one dimension, a conservation law of the general 
form 

JOt + J 1x = 0 (2.1) 

is equivalent to the condition ofintegrability of a potential Q, 
defined by the pair of equations 

(2.2) 

where it is assumed that the conserved current's components 
Jo and J 1 are given functions of the physical variables and of 
their partial derivatives. In physically meaningful situations, 
Jo and J 1 have given dimensions; as a result they are power­
law functions of time in the case of self-similar solutions 
(hereafter, SSS's). 

We now consider the case where the dimension of J 1 is 
such that the power-law index is - 1 for the SSE considered, 
i.e., 

(2.3) 

where S = xl! is the self-similar coordinate, and the expo­
nent A is a constant, namely, the power-law index of Jo: 

Jo = Sjo(S)/x=1! jo(S)' (2.4) 

In terms of the variables t,s, Eqs. (2.2) read 

Qs =jo(s), Qtls = - [j1(S) +ASjo(S)]It. (2.5) 

The integration is straightforward: 

Q = q(S) + r(f), (2.6) 

with 

q(S) = f jo(S)dS, r(t) = a In t (a constant), 

and the condition of compatibility (which is automatically 
fulfilled since, by hypothesis, Q is a conserved quantity) 
reads 

(2.7) 

In the process an integration constant a has emerged. Equa­
tion (2.7) is a first integral of the differential system. 

Another form, which is equivalent to (2.7), may be ob­
tained by choosing as the new unknown 

Y=expQ=f'y, 

with y = exp q(S). The SSE system becomes an ordinary 
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differential equation for the unknowny(S), and it contains 
an explicit dependence on the integration constant a. The 
equation is manifestly homogeneous iny, and accordingly its 
order can be reduced, which produces the required first inte­
gral. 

III. THE BURGERS AND THE NAVIER-STOKES 
EQUATIONS 

A. Burgers equation 

The relevant conserved quantity is the velocity potential 
<1>, defined as 

(3.1 ) 

the condition of compatibility is the Burgers equation itself. 
Dimensional analysis ofEq. (1.1) indicates that self-similar 
solutions exist only for the value A = - ~ of the exponent, 
i.e., the self-similar variable S is 

S=xlft. (3.2) 

Thus in the self-similar case the scale of the conserved quan­
tity <I> has the property of being time independent. 

With the notation of Sec. II, we have 

jo=Sz, jl =S2z2/2-z-SZ'(S), (3.3) 

where we have introduced a dimensionless variable z: 

z = vtlx. (3.4) 

Thus the first integral (2.7) is a first-order ODE for the 
unknownz: 

(3.5) 

which is a Riccati equation, as expected. 
If we choose Y = exp( - <1>/2) = f' yeS) instead of z as 

the unknown, we have 

y'(S)ly = - sz/2, (3.6) 

and the Riccati equation (3.5) is turned into a linear second­
order equation for y, 

2y" +Sy' +ay=O, (3.7) 

in agreement with the known result for the Cole-Hopf trans­
formation. 

Equation (3.7) is the self-similar form of the heat equa­
tion (1.3). 

B. The Navler-Stokes equations 

For a barotropic fluid of index r the Navier-Stokes 
equations read, in one dimension 

(r- 1) 
c, + vCx + cVx = 0 (continuity equation), 

2 
(3.8a) 

2 
v, + vVx + cc - v = 0 (Euler'S equation), 

(r-l) x xx 

(3.8b) 

where v represents the fluid's velocity and c the sound speed. 
It is worth noticing that, for the class of solutions character­
ized by a vanishing pressure (i.e., c = 0), the above system 
reduces to the Burgers equation. We assume for simplicity 
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the value r = 3 in what follows. The velocity potential still 
exists, and it is given by the following pair of equations: 

<l>x = v, <1>, = vx - (v2 + c2)/2. (3.9) 

The condition of integrability of <I> precisely coincides with 
the Euler equation (3.8b). 

In order to perform the self-similar analysis, we intro­
duce, as usual, dimensionless variables z and z: 

z = vt lx, Z = ct Ix. (3.10) 

Substitution into the Navier-Stokes equations yields the fol­
lowing system: 

szz' + S(z - pz' + z(2z - 1) = 0, (3.lla) 

2z" + z'[ 4/S + s(1 - 2z)] + 2z(1 - z) = 2Z(gi' + z). 
(3.llb) 

As is well known [see, e.g., Ref. 6, Eq. (4.16)], the contin­
uityequation (3.lla) admits of a first integral, expressing 
the law of mass conservation, namely 

S2z(2z-l) = C (Cconstant); (3.12) 

thusz can be eliminated, and we obtain a second-order ODE 
for the unknown function z(S). 

Applying the method described in the preceding sec­
tions, we have 

jo=Sz, jl=S2(Z2+ r )/2-(sz'+z), (3.13) 

and the general result (2.7) becomes 

f;- dz 1 f;- 2 [ -2] ~-+-~ z{1-z)-z +z-a=O 
dS 2 

(a constant). (3.14 ) 

Thus the second-order SSE admits of a first integral, as pre­
dicted, which is the above equation (3.14). 

The latter is not a Riccati equation, and it cannot be 
turned into linear form, unless the constant C vanishes. 
When C #0, movable branch points appear on the horizon­
tal axis (z = 0). 

Finally, as a "generalization" of the Cole-Hopf trans­
form, we may choose Y = f' Y (S) = exp ( - <1>/2) as a new 
unknown. In the same way as in Sec. II A, this yields a sec­
ond-order equation for y, which, however, remains nonlin­
ear in the general case (C #0). Substitutionofy'ly = - szl 
2 [Eq. (3.6)] produces, instead of the linear equation (3.7), 

2y" + sy' + ay = - s2yr/2 

(3.15 ) 

IV. CONCLUSION 

We have shown the existence of a new type o/first inte­
gral of the self-similar equations associated with a given par­
tial differential system, which occurs whenever there exists a 
conserved quantity Q, whose typical scale remains time inde­
pendent. In particular, in the case of the Burgers and the 
Navier-Stokes equations in one dimension, the velocity po­
tential plays the role of the conserved quantity Q; the corre­
sponding self-similar equations can accordingly be reduced 
to the first order. 

Unlike Q itself, the quantity Y = exp Q exhibits the 
characteristic self-similar behavior 
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y=t'y(xr<). 
The first integral arises as a consequence of the separable 
form of Yand ofthe homogeneity of the self-similar equation 
for y; and the integration constant may be interpreted as the 
exponenta. 

It is remarkable that it is precisely the same potential Y 
that linearizes the Burgers equation; the choice of Yas the 
new unknown is known as the Cole-Hopftransformation.7 
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Backlund and Darboux-Backlund transformations are deduced for the superevaluation 
equations recently deduced by Kupershmidt [B. Kuperschmidt, "A super-K-dV equation­
An integrable system," preprint UTSI-Tullahoma, 1984; Phys. Lett. A 102, 213 (1983); J. 
Phys. A 17, L863 (1984)] and Giirses [H. Giirses and O. Oguz, Phys. Lett. A 108, 437 
(1985)]. By a extension of the technique ofBPT [M. Boiti, F. Pempinelli, and G. Z. Tu, 
Nuovo Cimento B 79,231 (1984)] to anticommuting variables the bi-Hamiltonian structure 
and hence the form of the recursion operator for the Lie-Backlund symmetry for such 
equations are deduced. Incidentally some explicit forms of the Lie-Backlund symmetry are 
also deduced. 

I. INTRODUCTION 

Extension of an integrable class of evolution equations 
to include anticommuting field variables has recently been 
done by Giirses and Oguz l and also by Kupershmidt. z While 
the approach of Kupershmidt is based on a generalization of 
the pseudodifferential calculus of Gelfand and Dikii,3 that of 
Giirses and Oguz is a straightforward generalization of the 
matrix structure of the AKNS4 problem to include super Lie 
algebras. Below we first recapitulate the work of Giirses and 
Oguz and then develop a generalization of methodology of 
BPT5 to deduce the Backlund and Darboux-Backlund 
transformations for such equations. Last we deduce the 
Hamiltonian structure associated with such equations. 

the Ei's are the generators of the superalgebra6 b (0,1) satis­
fying the following commutation rules: 

II. FORMULATION 

In Ref. 1 the authors start from a linear problem 

\II x = U\II, (la) 

where U is a matrix belonging to the Lie superalgebra b (0, 1 ) 
having the form 

U = qEz + iAEo + rEI + EE3 + {3E4 , (lb) 

where (E, {3) are anticommuting variables, (r,q) are com­
muting fields, and A is the eigenvalue of the problem. They 
now adjoin a temporal evolution tP given by the equation 

tPt = VtP, (2) 

V again belonging to b (0,1 ) but with nine arbitrary elements 
all depending functionally on (q, r,{3, E, andA). In Eq. (la), 

[Eo,Ed = - 2Ez, [Eo,Ez] = 2EI, [EI,Ez] = Eo, 

[Eo,E31 = E3, 

[EI,E4 ] = E3, 

{E3,E4 } = Eo, 

[Eo,E4 ] = - E4 , [EI,E31 = 0, 

[Ez,E3] = E4, [Ez,E4 1 =0, 

{E3,E3} = - 2E I' {E4 ,E4 } = 2Ez, 

where [Ej,Ek ] is a commutator and {Ej,Ek } denotes an 
anticommutator. 

In ( 1 ) it was seen that by expansion of each element of V 
in A and keeping terms up to A 3, it is possible to generate the 
superversions of KdV, NLSE, etc. Here we first generalize 
this result by expanding V up to nth order in A. 

Let us assume 

C 

-A 
-a 

(3) 

If we assume R = ~f= I RjA n - j, where R = (A,C,a,/3,p), 
with A,B,C commuting, a,p anticommuting, then from the 
consistency condition \II xt = \II Ix we deduce 

2i(~::)= £(~), 
Pj+ I P1 

aj + I aj 

(4) 

where £ is the superrecursion operator written as 

a 2q a-I 2qa- I q 2E - 2qa -1{3 - 2qa -IE -- r 
ax 

- 2ra -Ir ~+2ra-IQ -2ra- l{3 - 2{3 - 2r a -IE 
ax 

£= 
2~- 2Ea- l{3 -2f3-2Ea- I r 2Ea -Iq 2q - 2Ea -IE 

ax 

- 2f3 a -I, 2E + 2{3a -Iq - 2r - 2f3 a -1{3 - 2~- 2{3a- 1E 
ax 
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So the class of equations are 

where (bo,co,po,ao) are arbitrary constants. 

III. BACKLUND AND DARBOUX-BACKLUND 
TRANSFORMATIONS 

(5) 

One of the most important properties of these complete 
evolution equations is the existence of a class of transforma­
tions that takes one solution to another solution of the same 
or a different equation. The former class is known as an auto­
Backlund transformation. Here we will derive a supersym­
metric generalization of such an auto-Backlund transforma­
tion for the class of equations under consideration. 

At present there exist various approaches for the deduc­
tion of the Backlund transformation. We will be adapting the 
technique of Darboux, which starts by connecting the two 
different eigenvalue problems pertaining to the two different 
solutions. 

Let 

'IIx = U(q,r,E,{3)'II, 'IIx' = U'(q',r',E',{3')'II' (6) 

be the two linear problems, where the corresponding nonlin­
ear fields are denoted by an unprimed and a primed set, 
which are assumed to be two different sets of solution of the 
same system of equations. Let us assume that it is possible to 
find a mapping between the old and new linear variables, 'II 
and'll', as 

'II' = Q'II = Q(A,q,r,E,{3,q',r',E',{3')'II. 

Then from Eqs. (6), we get 

Qx = U'Q-QU 

or 

Qx = iA [Eo,Q] + M'Q - QM, 

where 

M = qE2 + rEI + EE4 + f3E3, 

M' = q'E2 + rEI + E'E4 +f3'E3• 

(7) 

(8) 

(9) 

In the following we will be using the following nomencla­
ture. Every supermatrix is assumed to have the following 
structures: 

(10) 

where the superscript "e" means even part and "0" means 
odd elements and the subscripts "D" and "F" refer to, re­
spectively, the diagonal and off-diagonal elements of a ma­
trix. Since the odd part is always off diagonal we set Q 0 = P, 
Q'h = D, Q ~ = F and expand each in a series of A: 

n n 

p= L An-i~, F= L An-iFj, 
}=o }=o 

(11) n 

D= L An-jD, 
j=O 

then Eqs. (8) and (9) yield 
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Fjx = [eo,Fj+ d +M';D] - Dj M"p +M';Fj 

-Fj M'h + (M'OPj -~ M°)F, 

Djx =M,eD] - Dj M'h +M';Fj - Fj M"p 

+ (M 'O~ _ ~ MO)o, 

~x = [eo'p;+ d +M';~ -~ M~ +MD~ 
-~M'h +M'ODj -DjMo. 

Explicitly the matrices Fj, Dj , and ~ are of the form 

~~G 
cj ) C 0 

~} 0 ~' Dj~ ~ hj 

0 0 Pj 

~~(~ 
0 ') 0 i mj nj 

(12) 

Then we can deduce the following equations for the deter­
mination of the Darboux matrix: 

cjx = 2icj+ I + r'hj - raj + f3'nj - f3el' 

gjX = - 2igj+ I + q'aj - qhj + E'm] - Ekj, 

ajX = r'gj - qCj + f3'mj - Eej , 

hjx = q'cj - rgj + E'nj + f3kj , 

Pjx =E'ej -f3'kj -f3mj -Enj, ( 13) 

ejx = iej+ I + r'kj + 13 'pj - f3aj - Eej' 

kjx = - ikj+ I + q'ej + E'pj - f3gj - Ehj , 

mjX = - imj+ I - qnj - EPj, 

njx = inj+ I - rmj + f3pJ' 

These recursion relations can be solved in stages. To make an 
explicit calculation we consider the expansion (11) only up 
to second order inA. Then we obtain 

el = ia(f3' - 13), kl = ia(E - E'), 

m l = iEa, n l = if3a, (14) 

CI = (ia/2) (r' - r), gl = (ia/2) (q - q'). 

The whole computation becomes extremely laborious and 
unwieldy if all the four nonlinear fields are treated simulta­
neously, so we only display a few of the results of computa­
tion, and the final Backlund transformation is written for the 
special case 13 = 0, r = roo 

Following the same line of computation we get 

c2 = (a/4)(r; -rx + [r+r']{a-Irq-a-Ir'q} 

+ (r - r')2 a -IEf3 - 4{r'a -IE'f3 + ra -lf3'd), 

g2 = (a/4)(q~ - qx + [q + q']{a -Irq - a -Ir'q'} 

+ 2(q - q')a -IEf3 - {qa -lf3'E + q' a -IE'f3}). 
(15) 

Similarly for the others. The odd elements are obtained in 
the form 

m2=a( -Ex -qf3+Ea- IE'f3 

- Ea -lf3'E - lEa -IE'f3'), 
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n2 = a(Px + rE + P a -IE,p - P a -IP'E - 2{3 a -IE,P'). 

(16) 

After the determination of the Darboux matrix, the Back­
lund transformation (BT) is obtained by the condition that 

the coefficients of A 3 in (8) are identically equal to zero, 
which yields the direct relation between the old and new sets 
of nonlinear fields (q ,r,E,/3) and (q' ,r' ,E' ,/3 , ). As said before, 
we write out the BT for the casep = 0, r = ro pertaining to 
the super-KdV case. Here we get 

(q' - q)x + roD -I(q - q')(q~ - qx) + ro (q' - q)(a -Iq' - a -lq)2 + 4ro(q' - q)a -lEE - 4(E'E" + EE~ + EEx) = 0, 

(E - E')xx + (rc/2)E" (a -Iq' - a -Iq ) + (rod4) (q - q') + rrll'E' - roE a -IE'E + roEa -I(q - q')(a -Iq' - a -Iq ) = O. 
(17) 

The same procedure can be followed to determine the time part of the BT. 
For the time part of the BT we again start from the two equations 

'1', = V'I', '1'; = V''I''. 

Then we obtain immediately 

Q, = V'Q-QV, 

and this equation can be solved for time dependence of Q in an identical manner. 

IV. HAMILTONIAN STRUCTURE 

The Hamiltonian structure of the superevolution equations can be determined via the usual technique of Riccati equa­
tions and by extending the variational approach of Gui-Zhang.7 

From the 1ST equation (1) and (4) we first obtain Riccati equations for '1'1/'1'2 and '1'3/'1'4: 

r" = 2ur - r - PlI + qr + Erll, 11" = iAlI + P - Er + qllr, (18) 

with 

r = 'I' 1/'1' 2' 11 = 'I' 3/'1' 4' 

Ifwe now expand rand 11 in inverse powers of A, then we can determine the infinite set of conservation laws. The recurrence 
relations for such expansion coefficients are 

2irn + I = rnx - q L rj rk - E L rj 11k, 
j+k=n j+k=n 

along with 

rl = r/2i, 111 = O. 

;lIn+ I = lIn" + Er'1 - q L lIj rk' 
j+k=n 

In the following we note a few of these odd and even conserved quantities: 

even odd 

rl = r/2i 111 = 0 
r2 = - r,,/4 112 = - Er/2 

rxx 9r qrrx 
r3= -8i+8i-4 

Ex r 3 
113 = - U - 4i Er" 

rxxx qxr qrr" r4=--------
16 16 4 114 = ~E"xr + ~ E"rx 

+ ~ Er xx - i Eqr 

(19) 

These integrals of motion are really making up the various Hamiltonians for which we define the analytic function (for the 
time being we have kept "r" variable) 

H = - u - qr - ElI, (20) 

and assume 

So that upon equating different powers of A we obtain, by use of the above table, 

qr qrx 
H_I = -i, Ho=O, HI = - 2i' H 2 = -4' (21) 
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To extend the formalism of Ref. 4, we set 6H 16q = N, 6H 16r = M, and 6H 16E, and deduce, from the formulas for the chain 
rule of variational derivatives, 

M6H -y - lIy - 11ly 616r 

616y = - qly + E11ly - Ely 616q 

- o.11ly - q11ly -11D Iy + Ely - iA. Iy + q + Diy + ET/lr. M6E 

Applying Eq. (22) on both sides of H, we obtain 

y= -yM-N-11Q, 

2iA.yM = - yM" - qyM + qN + EQ + E11, 

2iA.N = Nx - r - 2ryM - 20. 11Q - qY11Q - E11N, 

(22) 

(23) 

(24) 

(25) 

which are the equations to be solved recursively for the variational derivatives of H. 
We quote here a few results of such a computation: 

;=0 
;= 1 
;= 2 

i= 3 

i=4 

o 
-rl2i 
rxl4 

rxx _ rq 
8i 4; 

rxxx 3 ---+-rr q 
16 8 x 

Similar computations can also be done for Q. It is interesting 
to observe that we get the following structure in the Hamilto­
nian formalism for the super-KdV equation: 

o ) (6H~6q) 
-1 6H~6t ' 

(26) 

when we have reverted to the old case r = roo 

V. THE LIE-BACKLUND SYMMETRIES 

It is now almost an established fact that the completely 
solvable equations do possess an infinite number of Lie­
Backlund (LB) symmetries. Here we show that even in the 
case of superevolution equations we can find out such LB 
symmetries, whose hierarchy is connected by a recursion 
operator. Let us consider the general transformation 

q-q + s11i (q,q1 ... qn'€'€1 .. , €n), 

€~ + S112 (q,q1 ... qn'€'€1 ... €n), 

where 

(27) 

and S is a small parameter. Then the condition of invariance 
of ( 11) leads to 

11it = 6ro11ixq + 6r~111i - 12112E2 - 12€11ixx + 11ixxx' 

112t = 11ixxx + 6ro11i €x + 6r~112x + 3r~1112 + 3ro11ix€' 
(28) 
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o 
-ql2i 
-qxl4 

qxx rrj €Ex ---+-
4 4; 2i 

qxxx 3 3 
----qq r+-EE 

16 8 x 4 xx 

where the a lat,a lax act according to the formulas 

a a a -a = Lqj+1 ~+ L Ej+1 ~ 
X ~j ~ 

and 

The first two symmetries, which are quite evident and are 
solutions of (28), are the space and time translational sym­
metry, given as 

so we proceed to determine the next nontrivial symmetry by 
keeping qj and €j up to ; = 5. Since the whole calculation is 
much too cumbersome we only report the final result 
(ro = 1) 

111 = qs - 8qq3 - 2Oq2q1 + 18q2ql - 2€q3 + 12(E1€1 + E€3) 

112 = 16€s - 27€q3 - 24E3q - 6O€2q1 + 30€1q2 

- 48€1q2 + 30£qql' 

It is not very difficult to observe that the symmetries given by 
(29) and (30) can be connected by the operator R given as 
(where ro = 1) 
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(31) 

and is 

(32) 

which helps to generate the infinite class. Furthermore with 
a little observation it appears that we can write R in a factor­
ized form: 

~) . 
(33) 

Such a factorization of the recursion operator can give rise to 
the Lenard relation, bi-Hamiltonian structure, and so on. 

VI. DISCUSSIONS 

In our above computations we have deduced some sym­
metry properties of some supersymmetric evolution equa­
tions, and also deduced their Hamiltonian structure. Our 
computation suggests that it may be possible to consider a 
supersymmetric generalization of the Miura map and other 
special properties of these bosonic equations to their fer­
mionic counterpart. It may be interesting to harness the con­
nection between these properties through an extension of the 
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deformation technique.8 At present such problems are under 
study and will be communicated in future. 
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The NLF-Lie group structure of the group 9 of the gauge transformations, defined as the 
group of sections of the bundle P[ GJ associated to the principal bundle P(M,G), is discussed. 
Other current definitions of the group of gauge transformations are shown to admit a 
nontrivial smooth structure only in the case of compact G. The space 'if' of principal 
connections, as well, is given the structure of local affine NLF-manifold, after identifications of 
connections with sections of a convenient vector bundle on M. Finally, the smoothness of the 
action of 9 on 'if' is proved in general. In the case of compact M, the group 9 becomes a tame 
Frechet-Lie group and the action a tame smooth action. 

I. INTRODUCTION 

In gauge theories a first and important step is the study 
of the action of the group [1 of the gauge transformations of 
a principal bundleP(M,G) on the set ~ of principal connec­
tions. In fact, according to the gauge principle, physical ob­
jects are the classes of gauge equivalent connections rather 
than connections themselves. In a natural way physicists are 
virtually forced to look at [1 as a smooth group acting on a 
smooth manifold ~. 

The problem of endowing these objects with appropriate 
smoothness structures has been approached essentially on 
the basis of projective limit techniques (see Ref. 1 and refer­
ences therein), making use of a rather indirect notion of 
smoothness and ofvery reductive assumptions like compact­
ness of the base spaceM and of the structure group G. A new 
approach of the Japanese schooe to infinite continuous 
groups introduces the "regular" Frechet-Lie groups. Even 
in this approach one cannot avoid the compactness hypothe­
sis for M in the treatment of the group [1 as a Lie group. 

In a previous pape~ the group [1, defined as the group 
of sections of the associated bundle P[ GJ, has been given the 
structure of the "Schwartz-Lie" group, i.e., of a Lie group 
modeled on a Schwartz space, without any assumption of 
compactness for M and G. In this paper we analyze two other 
current definitions of the gauge transformation group and 
show that they are not quite satisfactory from the point of 
view of smoothness properties, at least in the general case. 
However, assuming compactness of G we are able to show 
that the three definitions give isomorphic Lie groups (Sec. 
II). 

In Sec. III we identify the principal connections with 
sections of a convenient vector bundle on M and again with­
out any assumption of compactness we give Crff the structure 
of a local affine manifold model on a Schwartz space. 

In Sec. IV we give the proof of the smoothness of the 
action of [1 on C{J, in the case of compact M the group [1 
becomes a tame Frechet-Lie group and the action a tame 
smooth action. 

a) Corresponding author. 

The results of this paper, in our opinion interesting by 
themselves, are a necessary tool for the study of the orbit 
space ~ / [1 and its stratification structure. This will be the 
content of a forthcoming paper. 

II. THE GROUP OF GAUGE TRANSFORMATIONS 

Our basic object is a principal bundle 
P(M,G) = (P ,p,M;G) , where M is an ordinary manifold (or­
dinary manifold means Hausdorff, second countable, and 
locally compact COO -manifold, hence finite-dimensional 
paracompact and metricizable) and G an ordinary Lie 
group. Throughout the paper we will denote by A the princi­
pal action,A: P XG--+P, and by AQ andAu the partial maps 

A Q: p--+p, A Q(u) =A(u,a), aEG, 

Au: G--+P, Au (a) = A(u,a), uEP. 

We consider the associated bundles P[GJ=(P XG, 
G 

PG,M) (with fiber G and action of G on it given by inner 

automorphisms, a..".bab -I) and P[~]=(P X~,p ,M) 
G i' 

(with fiber the Lie algebra ~ of G and action of G on it given 
by the adjoint representation). 

We recall that the total space P XF of an associated 
G 

bundle P[F] (P XF,PF,M) with fiber F consists of equiv­
G 

alence classes on P XF relative to the joint action of G. 
We will denote by [(u,f)]G the equivalence class of the 

point (u,f)EP XF. Thus, in the case of P[G], 

[(u,a)]G 

: = {(u',a')EP XG 13hEG: (u',a') = (ub,b -lab)} 

and similarly for [(u,a)]G in the case of P[~]. 
The group [1 of gauge transformations of P(M,G) is, by 

definition, the set Sec P[ G] of the (smooth) sections of 
P[ GJ with pointwise defined composition law. 

It has been proved in Ref. 3 that [1 is an NLF-Lie 
group, that is, a Lie group modeled on a complete locally 
convex nuclear space, strict inductive limit of a countable 
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family of separable Frechet spaces. More precisely, the re­
sults of Ref. 3 can be summarized in the following state­
ments. 

(i) f1 is an NLF-Lie group. 
(ii) The set Secc PL~] of the compact support sections 

of PL~] with pointwise defined operations is an NLF-Lie 
algebra, in fact the Lie algebra L [§ of f1 . 

(iii) An exponential map Exp: Secc P[? ]---+Sec P[ G] is 
defined by (Exp 0") (x): = exp O"(x) VxEM, where exp: 

P X?---+P X G is the fiberwise defined exponential map, 
G G 

which is a local diffeomorphism at O. 
According to these results we more simply say that ::1 is 

a Schwartz-Lie group and its Lie algebra a Schwartz-Lie 
algebra. 

From the algebraic point of view, it is well known (see, 
for instance, Ref. 4) that the group f1 is isomorphic with the 
group f1# of those diffeomorphisms I of the total space P of 
P(M,G) such that 

(a)pol=p, 

(b)/(ua) =/(u)a, VuEP, VaEG. 
A 

The group f1#, in turn, is isomorphic with the group f1 of 
those maps! P---+G such that 

f(ua) = a-Y(u)a, VuEP, VaEG. 

The isomorphisms are 

L: f1---+f1#, L(S)(U) = ua, 

where aEG is such that (sop) (u) = [( u,a) ] G' and 
A A A 

: f1#---+f1, 1.-J, 

where}'is defined by/(u) = uf(u). 
Obviously, f1# is a subgroup ofthe group Diff P of the 

diffeomorphisms of P. Now, as shown by Michor,5 Diff P 
can be given the structure ofNLF-Lie group with Lie alge­
bra the NLF-Lie algebra !IF c (P) of vector fields on P with 
compact support. It is easy to see that f1# is closed in the 
FD-topology, which is the toplogy underlying the differen­
tial structure of Diff P. Under this topology the connected 
component of the identity contains only diffeomorphisms 
with compact support. If G is not compact, the only element 
of f1# with compact support is the identity itself, owing to 
the equivariance property, therefore, in this case f1# is a 
discrete subgroup of Diff P. 

Analogously, ~ is a closed subgroup of the Schwartz­
Lie group C'" (P,G) (see Ref. 3) and again, if G is not com­
pact, ~ is a discrete subgroup of C'" (P,G). 

From these remarks it clearly appears that to consider 
the gauge transformations as diffeomorphisms of P can be 
unsatisfactory. Indeed they are bundle automorphisms and 
only the group f1 fits completely this character, since, from 
the categorical point of view, bundle morphisms must be 
looked at as sections of a suitable bundle. 

If the structure group Q is compact, however, f1# is a 
Lie subgroup ofDiff P and f1 a Lie subgroup of C'" (P,G) as 
shown in the following theorems. 

Theorem 2.1: If G is compact, f1# is a splitting Lie sub­
group of Diff P and its Lie algebra !IF~ (P) is the splitting 
subalgebra of !IF c (P) consisting of the vertical G-invariant 
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vector fields on P with compact support. 
Proof First we note that the subspace !IF:(P) of the 

vertical vector fields splits !IF c (P). We introduce then the 
linear operator6 

L: !IF:(P)---+!IF:(P), 

(L X ) (u): = L (X· a)(u)dp,(a), 

whereX· a is the induced right action of G on vector fields of 
P and p, is the normalized Haar measure on the compact 
group G. It is immediate that f G is a continuous projection 
onto !IF~(P), the subspace of !IF:(P) consisting of the G­
invariant elements. This shows that !IF~ (P) is a splitting 
subspace of !IF c (P); moreover, by standard arguments, 
!IF~ (P) turns out to be a Lie subalgebra of !IF c (P). 

Now we recall that Diff Pis a NLF-Lie group and that a 
chart at the identity e is given by (U; ,X, !IF c (P»), where 

( 1) 7 is a local addition on P, 

(see, for definition, Ref. 3 or Ref. 5); 

(2) U; = {/EDiff P I/-e, I(U)E7u (TuP)} 

[11 -12 means that the set {uEP 111 (u) =1= 12 (u)} is relatively 
compact]; and 

(3) X: U;---+!lFc (P), x(/): = X, 

withX(u) = 7u-'(j(U»). 

As we will show in the subsequent Lemma 2.2, there exists a 
local addition 7 on P such that 

(i) 70TA ° =A 007; 

and (ii) the fibers of Pare additively closed, i.e., 

7(Veru P) CPx ' xep(u). 

For such a local addition we have 

X( U;nf1# ) = !IF~ (P). 

Actually, if X = x(/) with/EU;nf1#, then X(u)EVeruP 
since/(u)EPx and fibers are additively closed and X is G­
invariant since 7 is equivariant; vice versa, if XE!IF~ (P), the 
map I = 7 0 X is a diffeomorphism of P since X is surjective 
and satisfies 

f(ua) = (7· X)(ua) = 7{(TA °oX)(u») 

= (70X)(u)a =f(u)a, 

(pof)(u) = p(7(X(U») = p(u), 

hence fEf1 # . Thus f1# is a splitting submanifold of Diff P, 
hence a Lie subgroup of Diff P and its Lie algebra is the 
splitting Lie subalgebra !IF~ (P) of !IF c (P). 0 

Lemma 2.2: Let P(M,G) be a principal fiber bundle 
with principal action A. There exists a local addition 7 on P 
satisfying conditions (i) and (ii) above. 

Proof: Take a G-invariant partition of unity {fa} of P 
subordinated to a local trivializing system {( Ua ,f/Ja )}. If 5G 
is the (right) invariant spray on G and 5a any spray on Ua, 
then 

5 = 'Lfa5a E9 5G 
a 

is a G-invariant spray on P. The corresponding exponential 
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map expS is equivariant and defined on an open G-invariant 
neighborhood V ofthe zero section of TP. Using a G-invar­
iant metric on P, a contracting diffeomorphism h: TP 
~h(TP) e V with h(Ou) = Ou' 1rp oh = 1rp, where 1Tp: TP 
~P, can be constructed as in 10.2 of Michor, which, more­
over, is equivariant. Therefore 1" = exps °h satisfies (i). As 
to (ii), it is enough to remark that the spray S, when restrict­
ed to the fiber Px over x, gives a spray on Px and the diffeo­
morphism h preserves Ver P. 

A 

Theorem 2.3: If G is compact, Y is a splitting Lie sub-
group of C"" (P,G) and its Lie algebra is the splitting subal­
gebra C;a (P,?) of the Lie algebra C;' (P,?) of C"" (P,G) 
consisting of those maps~: p~? with compact support such 
that ~(ua) = Ada-l (~(u)). 

Proof' The linear operator 

L: C;'(P,?)~C;'(P,?), 
(i fP ) (u): = L Ada (fP(ua»)d,u (a) 

is clearly a continuous projection onto C;a (P,?) and this 
shows that C;a (P,?) is a splitting subspace of C ;' (P,?); in 
fact C;G (P,?) is a Lie subalgebra of C ;' (P,?) since the Lie 
bracket is pointwise defined. A chart at the identity of the 
NLF-Lie group C "" (P,G) is given by (Ue, X, C;' (P, V) 
e C;' (P,?»), where, if eXPG : ?~G is the exponential map of 
G, V is a zero neighborhood in ? such that eXPG ~ v: 
V~xPG ( V) = we G is a diffeomorphism, 

Ue = {feC "" (P,G) If-e, f(P) e w} 

and 

X: Ue~C;'(P,V) 

is given by x(f) = 10gG°f, 10gG = (exPG ~ v )-1: W~V. 
We may assume that Vis invariant under the adjoint action 
(e.g., an open ball with respect to a G-invariant metric on?) 
so W is invariant under conjugation. Then 

A A 

YnUe = Ue 

: = {feC""(P,G)lf- e, 

f(P) e V, f(ua) = a-1j(u)a, VaeG}. 
Clearly 

X( Ue) = {fPeC "" (P,?) IfP-O, 

fP(ua) = Ada-1fP(u), fP( U) e V} 

= X( Ue )nC;a (P,?). 

Then f1 is a splitting submanifold of C "" (P,G), hence a Lie 
subgroup with Lie algebra the subalgebra C;a(P,?) of 
C;'(P,?). 0 

As remarked above the groups Y, Y'* , f1 are algebrai­
cally isomorphic and we can consider the following diagram: 

Y ft'* 

'i'-f1/ 

where the isomorphism} is given by 

h(f)(x): = [(u,j(u»]G' UEp-I(X). 

Now we know that in the case of compact G the three 
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groups are NLF-Lie groups. The following result is expect­
ed. 

Theorem 2.4: If G is compact, the Y, Y'*, and f1 are 
isomorphic as NLF-Lie groups. 

Proof: We must just prove that the maps in the above 
diagram are smooth. 

(a) The map t is smooth. Introduce the smooth map 

r: (P XG) XP~P, r([ (u,a) ]G'u»): = ua, 
G M 

where (P X G) X P is the total space of the fiber product of 
G M 

the bundles P[ G] and P(M,G), and consider the following 
maps: 

to: Y ~C "" (M,P X G), the canonical embedding, 
G 

tl: C "" (M,P X G)~C "" (P,P X G), f-fop, 
G G 

t2: C""(P,P XG)~C""(P,(P XG) XP), 
G G 

(t2(f»)(u): = (f(u),u), 

t3: C ""(P,(P xG) xP~C "" (P,P), t/lXT/-ro(t/l0T/). 
G M 

The maps t 1 and t3 are smooth by Theorem 11.4 of Ref. 5; the 
map t2 is smooth by Proposition 10.5 of Refs. 5; finally, to is 
smooth by Proposition 10.10 of Ref. 5. Note that t20tlOtO 

takes the values in the submanifold C ""(P,(P X G) XP) of 

C "'(P,(P X G) XP) and that t = t30t20t10tO' 
G 

G M 

(b) The map A is smooth. Introduce the smooth map 

v: P XP~G, v(u,v): = a, where ua = v, 
M 

and consider the following maps: 

Ko: Y '*~C ", (P,P), the canonical embedding, 

K1: C""(P,P)~C"'(P,P XP), (K1(f»)(u): = (f(u),u), 

K2: C""(P,P XP)~C"'(P,G), K2(f) = VO f 
M 

Note that A = K20K10Ko; its smoothness follows by the same 
arguments as at the end of (a). 

(c) The map j is smooth. As is shown in Ref. 3 we can 
use as charts at the identities of the groups f1 and Y the 
canonical charts using the exponential mappings 

Exp: L~ =Secc P [?]~Y, (EXpA)(X) = expx(A(X»), 

where exp: P X ?~p X G is the pointwise defined exponen-
G G 

tial map, and 

E~p: L~ =C;a (P,?)~f1, (Eip u)(x) = eXPG(u(u»). 

The two charts are clearly j-correlated and the local expres­
sion ofj is the continuous linear operator 

C ;G(P,?) 3A-AeSecc P [?] 

with 

A(x) = [(u,A(u»]G' UEp-I(X). 

Hence the isomorphismj is smooth. o 
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We remark that, taking into account the properties of 
the exponential map of f1 ,3 Theorem 2.4 shows that the ex­
ponential map of the group Diff P restricted to f1 # is a local 
diffeomorphism in the case of compact G. 

We conclude this section calling attention to two inter­
esting properties of the Schwartz-Lie group f1. 

( I) The group f1 has no small subgroups; this can be 
easily seen and essentially stems from the fact that the group 
G, as every ordinary Lie group, has the same property.? 

(2) The group f1 is analytic and the Baker-Campbell­
Hausdorff formula holds 

Exp u Exp u' = Exp{ (u + u') + ~ [ u,u' ] 

+-b([u,[u,u']] - [u',[u,u']] + ... }, 
for every u,u' in a suitable neighborhood of 0 in L [§ • 

This can be seen rather easily using the canonical atlas 
defined by the exponential map and again remembering that 
the same property holds for the group G. 

Obviously also the group f1# and f'1 are these two prop­
erties in the case of compact G. 

III. THE MANIFOLD OF PRINCIPAL CONNECTIONS 

In gauge theories an important step is the study of the 
action of f1 on the space ~ of principal connections. Usually 
this action is introduced essentially as a pullback via the 
gauge transformations considered as diffeomorphisms of P. 

As pointed out in Sec. II, the gauge transformations are 
in fact bundle automorphisms and this point of view is per­
haps the only suitable way, in the general case, to treat 
smoothness properties of the group of gauge transforma­
tions. 

Accordingly it might be convenient to look at connec­
tions too as sections of a suitable bundle over the base space 
M. This is just the aim of this section. 

We need some preliminaries. 
As is well known the tangent space TG of the Lie group 

G with multiplication J.l: G X G--G can be given a Lie group 
structure with multiplication Tfl. 

The group TG can be made to act on the Lie algebra of G 
by introducing the affine action 

B: TG Xf?--f?, B(aa,o):Adao - a, 

where aa ETa G, aEf?, and aa = (TeRa )a. 
Moreover the group TG can be considered as the struc­

ture group of the tangent principal bundle TP( TM,TG) 
=(TP,Tp,TM;TG). Actually if (Ua,({Ja) is a trivializing 
system for P(M,G) with transition functions ({JaP' then 
(TUa,T({Ja) is a trivializing system for TP(TM,TG) with 
transition functions T ({J ap . 

We recall that a connection one-form cu on the principal 
bundle P(M,G) is a f?-valued one-form on P such that 

(a) cu(a~) = a, VuEP, 

for every fundamental vector field a* on P, i.e., 

a~ = (TeAu )a, aEf?; 

and 

(b) cuoTA a = Ada - locu, VaEG. 

Looking at cu as a map from TP into f? we can investigate 
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its equivariant properties with respect to the actions of TG 
on TPandf? 

We have, with su ETuP, aa ETa G, andaEf? such that aa 
= (Te,Ra)a, 

cu(T(u.a)A (su,aa») 

= cu( (TuA a)(su) + (TaAu )(aa » 
= Ada-,cu(su) + cu( TaAu)( (TeRa )a)) 

= Ada-,cu(su) + cu(TuA aoT.Au )a) 

= Ada-,cu(su) + Ada-,cu(TeAu )a) 

= Ada-,cu(su) + Ada-,a 

= B(aa )-I,cu(su »). 

Thus connection one-forms can be considered as (parti­
cular) B-type f?-valued maps on TP. It is well known that the 
B-type f?-valued maps on TP correspond bijectively to the 
sections ofthe bundle TP[f?] associated to the principal bun­
dle TP( TM, TG). To get a precise characterization of con­
nection one-forms we must investigate this associated bun­
dle. 

First of all we remark that TP[f?] = (TP Xf?,Tpp,TM) 
TG 

is an affine bundle, that is, a bundle of affine spaces; actually 
the action B of TG on f? is affine. The transition functions 
tPap take values in the group of affine transformations of f? 
and are given by 

tPap (sx)o = B ( Tx({JaP)Sx,o) 

= Adcpap(x)o - (dx({JaP)Sx' 5xETUaP, 

where dx({Jap = (TeR({JaP(x) )-'oT,,({JaP is the (right) loga­
rithmic derivative of the transition function ({Jap of the prin­
cipal bundle P(M,G). 

We now introduce the fiber bundle TP M [f?] = (TP X f?, 
TG 

1rM 0 Tp,M) , where 1rM : TM __ Mis the projection of the tan-
gent bundle of M. 

By standard arguments it can be seen that TP M [f?] is a 
vector bundle for which the fiber over x is TxM Xf? 

If Op: P __ TP, OM: M __ TM, and 0G: G--TG are the 
zero sections of the corresponding tangent bundles, the fol­
lowing diagram commutes: 

P Op TP 

1 l .-=--__ O_M __ ~rM 

The pair (Op,OG) is an injection of principal bundles 
over OM' so it induces uniquely a map 

Y: P Xf?--TP Xf?' 
G TG 

which is a bundle injection over OM of the associated bun­
dles P[f?] and TP[f?]. Moreover Y is a vector bundle injec­
tion of P[f?] and TP M [f?] over idM • 

Now we can prove the following decomposition 
theorem, which will be very important later on. 

Theorem 3.1: TP M [f?] g,;P[f?] ED TM, that is, the vector 
bundle TPM [f?] is the Whitney sum of P[f?] and the tangent 
bundle ofM. 
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ProoF The image Y (P[?]) of P[?] is a subbundle of 
TP M [? ]. Hence there exists a Whitney complement of 
Y(P[?]), i.e., a subbundle W of TPM [?] such that 
TPM [?] = Y(P[?]) E9 W. Looking at the diagram 

Y PX?' • TPX? 

p,j >- F" 
M ~ TM 

1'rM 
we get Tpp 0Y = OMoPp' so that 1m YCKer Tpp' Tpp be­
ing a vector bundle morphism over M. But dim 1m Y 
= dim? = dim Ker Tp p' so 1m Y = Ker Tp p • Hence Tp p 

induces a vector bundle isomorphism of Wand TM. 0 
Now we can give a precise characterization of the con­

nections on P(M,G) among the sections of TP[?]. To every 
connection one-form CtJ there corresponds a section Y of 
TP[?] with 

Y(5,,) = [(5u,CtJ(5u »)] TG' 

where Tp(5u) = 5x. Clearly the connections are exactly 
those sections Y of TP[?] that satisfy the following diagram: 

TyTPr 
M id • M 

and are linear on the fibers, that is on those sections of TP[?] 
which are also vector bundle morphisms over the identity of 
TMand TPM [?]. 

Thus we have, denoting by CC the set of the principal 
connections, 

CC={YESecL(TM,TPM [?]), Tp °y(x) = lx, VxEM}, 
" 

where L ( TM, TP M [?]) is the vector bundle over M whose 
fiber at x consists of the linear maps from TxM into 
(1'rMOTpp )-I(X) and Ix is the identity operator on TxM. 

On the basis of the above identification we can give CC a 
suitable differentiable structure. 

It is shown in Ref. 5, Proposition 10.10, that the vector 
space Sec E of the sections of an ordinary . vector bundle 
(E,1'r,x) is a splitting submanifold of Coo (X,E) modeled on 
theNLF-spaceSecc E. ForanysESecE, the sets + Secc Eis 
an open neighborhood of S in FD-topology and an affine 
subspace, which is isomorphic to Secc E; for this reason 
Sec E is called a local topological affine space. We now prove 
that CC is an affine subspace and a splitting submanifold 
(shortly a local topological affine splitting subspace) ofthe 
local topological affine space Sec L (TM, TP M L?] ). 

Theorem 3.2: CC is a topological affine splitting subspace 
of Sec L(TM,TPM [?]) isomorphic to SecL(TM,P[?]) as 
topological affine space. 

ProoF Fix YoE1f; since Tpp o(y(x) - Yo(x») = Ox, Vx 
EM, implies Y - YoEKer Tpp = 1m Y, then Y - Yo 
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ESecL (TM,Y(P[?])). Conversely, let OESecL (TM, 
Yep [?] »). One can easily prove that Yo + OECC; moreover, 
by Theorem 3.1, SecL(TM,TPM[?]»)~SecL(TM,TM) 
E9 Sec L (TM,P [?]) as locally convex vector spaces, hence 
Sec L (TM,P[?] ) is a splitting submanifold of 
Sec L ( TM, TP M [?]) modeled on Sec L ( TM,P[?] ). 0 

Remark: There is another interesting way to look at 
connections of P(M,G); they can be considered as reduc­
tions of the principal bundle TP( TM,TG) to the subgroup G 
of the structure group TG. This follows from the fact that the 
bundles TP[?] and TP /G are isomorphic and by Proposi­
tion 5.6 (Chap. I of Ref. 8). 

Here we will not exploit further this point of view on 
connections. 

IV. SMOOTHNESS OF THE ACTION OF f1 ON CC 

In order to prove the smoothness of the action of ~ on 
CC we need some preliminary results of geometric nature. 

Given the principal bundleP(M,G), letZ: G XF~Fbe 
the left action of G on a manifold F which defines the asso­
ciated bundle P[ F]; then TZ: TG X TF ~ TF is again a left 
action and defines the associated bundle TP[ TF]. 

The following theorem can be proved by standard argu­
ments. 

Theorem 4.1: (a) The associated bundle TP[ TF] is iso-

morphic to the tangent bundle (T(P XF),TpF,TM) of the 
G 

bundle P[F]. 

(b) The triple 0(PXF) = (TPXTF,tJF,PXF), 
G TG G 

where tJF( [(5u,5[)] TG) = [(u,J) lG' is a vector bundle iso-

morphic to the tangent bundle of the manifold P XF. 
G 

Given two vector bundles 51 = (E,1'r I ,x) and 52 
= (F,1'r2,y), we recall that L(51,52) stands for the vector 

bundle (L(E,F),a XCtJ,x X Y), whereL(E,F) (x,y) consists of 
the linear mapsL(x,y) :Ex~Fy and (a X CtJ)(L(x,y) ) = (x,y). 
We denote by Lx (51,52) the bundle over X obtained by the 
composition of aX CtJ with the canonical projection on X. 

Moreover, if X and Yare smooth manifolds, the 
one-jet map j I: COO (X,Y)~Coo(X,J1(X,Y») is a smooth 
map by Proposition 11.1 of Ref. 5. Now, identifying 
J I (X, Y) with L ( TX, Ty), we remark that the map j I takes 
values in the splitting submanifold Sec Lx ( TX, Ty) of 
Coo (X,L ( TX, TY»). Therefore the map 

j I: ~ = Sec P [G l~Sec LM(TM,T(P X G») 
G 

is a smooth map and by Theorem 4.1 we can consider it as a 
map 

jl: ~~SecLM(TM,0(PXG»). 
G 

Coming to the action of ~ on CC, first we recall that in 

the definition of TP X TG we use the action of TG on itself 
TG 

by inner automorphisms aa Nu,lJb aafJb -I and in TP X? the 
TG 
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above defined action B: TG X fl---+fl. One can easily check 
that 

B({3baa{3b -1,B({3b,8») = B({3b,B(aa,8»). 

Then the following "fibered action" is well defined: 

B: (TP XTG) X (TP Xfl)---+TP Xfl, 
TG TM TG TG 

B( [(su,aa)] TG'[ (su,8)] TG): = [(Su,Ada 8 - a) hG' 

where aa = TeRa . a. 
Using B we define the left action of Y on ~ 

A: Y X CC ---+CC, A(s,y) = y, 
where 

Y(sx): = B (j IS)(Sx ),y(Sx »), for sxeTxM . 

Theorem 4.2: The action A is smooth. 
Proof: We can decompose A as follows: 

jlXi 

Y X ~ ---+ SecLM(TM,0(P xG»)XSecL(TM,TPM[fl]) 
G 

Camps i-I 

---+ Sec L (TM, TP M [fl])---+ CC , 

wherei: ~ ---+Sec L( TM,TPM [fll) is thecanonicalinclusion 
and use of the fact that Comp» (j I Xi) (Y X CC) kIm i is 
made. We have just recalled thatj I is a smooth map; the 
inclusion i is an embedding by Theorem 3.2 and Comp» is 
smooth by Proposition 11.4 of Ref. 5. 0 

Remark: We recall that, for every ye~, Y(Sx) 

= [(Su,w(Su»)] TG' where Tp(Su) = Sx and w is the con­
nection one-fo~ c~rresponding to y. Analo~ously if seY 
there exists an jeY such that sex) = [(u,J(u»)lG with 
UEp-I(X). Moreover 

(j IS)(Sx) = (Ts)(Sx) = [(Su,( Tj)(Su))] TG 

so that we have 

B ([(su, (T,j )(Su »)] TG' [(Su ,w,Su»)] TG) 

= [(Su,Ad[(u)w(Su) - (dj)(Su ))hG' 

wheredj,::" (TeRfiu) )-loT) is the (right) logarithmic deri­
vative ofjat u. 

If we change the left action into a right action 

A:~XY---+~, A(y,s)=r:=A(s-l,y), 

we have 

r(Sx) = [(su,Ad([(uW'w(su) - (dj)-I(Su)hG 

= [(Su,Adfiuw'w(su) 

+ (T[(u)L({(uW' oT ))(Su)] TG' 

since 

(dj)-I(su) = (TeR(fiuw' )-loTu 1-I(Su) 

= (T[(u)-,R[(u) oT )-I)(Su) 

= - (Tfiu)L(fiuw,OTul)(su)' 
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In the expression 

Ad(fiuw'w(Su) + (Tfiu)L(fiuw,OTuj)(Su)' 

one can easily recognize the usual transformationj*w of the 
one-form w via pullback with the automorphismj defined by 
j(u) = uj(u) (i.e., the corresponding element of ylI). 

Once the smoothness of the action A has been proved, a 
natural development is the investigation of the properties of 
the orbits and the structure of the orbit space. In this context 
the main difficulties one is faced with arise from the lack of 
inverse map theorems for manifolds modeled on locally con­
vex vector spaces more general than Banach spaces. Perhaps 
for this reason it is common in physical applications to retire 
to Banach manifolds or to chains of Banach manifolds. 
However, a workable version of the inverse map theorem 
(the Nash-Moser theorem) is now available for a significant 
subcategory of Frechet manifolds called "tame Frechet 
manifolds" by Hamilton.9 

Now, if the base manifold M is assumed to be compact, 
the group Y clearly becomes a nuclear Frechet-Lie group 
and CC a splitting affine subspace of a nuclear Frechet space. 
Actually we can show that Y is a tame Frechet-Lie group, 
Y a tame Frechet manifold, and the action a tame smooth 
action. 

To some extent, moreover, even the case of noncom pact 
M can be handled: the connected component of the unit of Y 
can be shown to be a strict inductive limit (in the category of 
topological groups) of tame Frechet-Lie groups. 

As a consequence of the tameness properties we can 
prove, in general, that every locally compact subgroup of Y 
is a splitting Lie subgroup. This result appears as a general­
ization to Y of a classical Cartan theorem and will be useful 
in the study of stability subgroups of the action Y on CC. 
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Associated with a finite connected graphg is a doubly stochastic (Laplacian) matrix G(g). A 
lower bound on the "mass gap" for G(g) is obtained, i.e., the first nonzero eigenvalue of G(g). 
This estimate is then used to estimate the mass gap for some infinite particle stochastic generators 
with corresponding processes that are closely related to Monte Carlo methods employed in 
statistical mechanics calculations. 

I. INTRODUCTION 

Let g be a finite connected graph consisting of n vertices 
and (nondirected) bonds connecting various pairs of ver­
tices. Then we can associate with g a Markov semigroup 
generator (doubly stochastic matrix) G(g) with matrix ele­
ments 

G(g)ii = n(i) with n{i) the number of bonds 

emanating from vertex i, 

G(g)ij = - I (or 0) according to whether there 

is a bond (no bond) between vertices 

i and j, i =Ij. ( 1.1 ) 

The matrix G(g) is just a (negative) Laplacian on g. Here, 
our first objective is to obtain a lower bound on the mass gap 
[i.e., the first nonzero eigenvalue of G (g) ]. This mass gap, of 
course, controls the rate at which the semigroup generated 
by G(g) approaches equilibrium. 

Generalizing this problem, we let n be a perturbation of 
a countable direct sum of operators of the form G (g). More 
precisely, let g be a fixed graph, X(g) its vertices, 'ld the d­
dimensional integer lattice, and r a site in 'ld. Define the 
(compact) state space X = nTEZdX(g) and let 0' denote a 
point in X with O'(r) its rth coordinate. Then we formally 
define n acting in C(X), the space of continuous functions 
on X in the sup norm, by 

n = L c(r, . )(G(r,g) ® 1); 
TEZd 

( 1.2) 

here, the c (r,O') are non-negative continuous functions on X 
and G(r,g) is a copy of G(g) corresponding to the site r. 
[Under suitable hypotheses on the c(r,O') including bound­
edness and decaying dependence on O'(s) at sites s remote 
from r, functions of the form/(O') = g(O'(rt), ... ,O'(rm ») form 
a core for n (cf. Ref. 1, for the stochastic Ising case), and so 
the closure of n generates a unique semigroup. ] Our second 
and main objective is to show that if the c(r,O') are nearly 
constant [so that the terms in Eq. (1.2) nearly commute], 
then the mass gap of n is approximately that of one of the 
terms; hence the need for a mass gap estimate on G(g). We 
add that the semigroup generated by n is closely related to 

the (discrete) Monte Carlo methods employed by many 
authors to study the Gibbs states of statistical mechanical 
and field theoretical models, and so the mass gap of n is 
related to the rate at which the Monte Carlo method con­
verges to equilibrium. Moreover, this exponential approach 
to equilibrium can be used to show that the correlation func­
tions for the invariant state cluster exponentially (cf. Ref. 2 
for the stochastic Ising model). 

Section II provides the estimate on the mass gap for 
G (g). The proof is split into two parts. The first part consists 
of an abstract version of the interlacing theorem for self­
adjoint matrices and its principal submatrices; the second 
part applies this result to G(g) in order to obtain the mass 
gap estimate roughly in terms of the number of vertices and 
the diameter of g. Our result should be contrasted with 
Cheeger3 who considers the same problem for the Laplacian 
on compact manifolds. For additional results on the spectral 
properties of operators associated with graphs, see Ref. 4. 

Finally, in Sec. III, we obtain an estimate on the mass 
gap for n defined in Eq. (1.2). Actually n need not be self­
adjoint so that the mass gap estimate is phrased in terms of 
the rate at which the semigroup generated by n approaches 
equilibrium. This result is an adaptation of Liggett's argu­
ment for the stochastic Ising model. 1 The proof is adaptable 
to a broader class of operators (e.g., operators with drift 
terms), but for simplicity we have confined ourselves to op­
erators n of the form Eq. (1.2). See also FarisS for an analo­
gous result on the stochastic Heisenberg (rotator) model. 

II. SPECTRAL PROPERTIES FOR THE GRAPH 
LAPLACIAN 

We begin with a general result concerning the eigenval­
ues of an arbitrary self-adjoint matrix. The result is really 
just an abstract version of the interlacing theorem (cf. Ref. 6, 
p. 203) sometimes called Cauchy inequalities for eigenval­
ues. 

Theorem 2.1: Let A be an n X n self-adjoint matrix, V: 
am_an a linear isometry, m<n, and define the m Xm self­
adjoint matrix A C by 

(x, A CY)m = (Vx, AVY)n , (2.1) 

where ( . , . ) p denotes the usual dot product in lRP• Then 

Ak'A~<An_m+k' l<k<m, (2.2) 

where At <A2< ... <An are the eigenvalues of A and 
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A ~ <A ~ < ... <A ~ are the eigenvalues of A e. 

Proof For any k-dimensional subspace WCR n, W 
contains a normalized element uEspan {ek, ... ,en }, whereej is 
a normalized eigenvector of A corresponding to Aj. Thus 

ml!x (u,Au)n>A k • 
UEW 

lIuli = I 

On the other hand, if e~ is a normalized eigenvector cor­
responding to A~, W = span{e~ , ... ,en and W = VW, then 

A k = max (x, A ex) m = max (u, Au) >Ak 
xeW ueW 

Ilxll= I Ilull= I 

by Eq. (2.1). The other inequality of inequality (2.2) fol­
lows by replacing A by - A and employing the above argu­
ment. 

We actually only use this theorem here in the following 
manner. 

Theorem 2.2 (Interlacing Theorem): Let A be a self-ad­
joint matrix A e the principal submatrix obtained from A by 
suppressing the ith row and 'column, for any i, 1 <i<n. Then 

(2.3 ) 

where A I < ... <An and A ~ < ... <A ~ _ I are the eigenvalues 
of A and A e, respectively. 

Proof Let 

v = (xI,,,,,x n _ I )ERn 
- 1-*(XI,,,,,xj _ I ,O,xi>,,,,xn _ I )ERn 

and apply Theorem 2.1. 
Remark: As another illustration of Theorem (2.1), 

however, we show the well-known fact that a self-adjoint 
rank 1 perturbation of a self-adjoint matrix A, A + P, has 
eigenvalues {A ;} interlacing those of A. It is no restriction to 
assume Pis positive so clearly Aj<A;, i = 1, ... ,n, with n the 
dimension of A. Let Q be projection onto the orthogonal 
complement of the rangeP. Then by Theorem (2.1) it is easy 
to see that Q(A + P)Q = QAQ, restricted to ran Q, has 
eigenvalues A ? interlacing those of A and A + P so that in 
particular, ..1;<..1 ?<A j + 1> i = l, ... ,n - 1. Hence, 
Aj<A ;<Aj+ 1> i = 1, ... ,n - 1. 

As an application of this Theorem 2.2, we return to the 
problem of obtaining a lower bound on the first nonzero 
eigenvalue of G (g) defined in the Introduction. The idea is to 
estimate this eigenvalue by the first nonzero eigenvalue of 
G(gr)' where gr is any tree graph (a simply connected 
graph) linking all vertices ing and which is a subgraph of g. 
We call such a tree graph allowable. Given a tree graph gr' 
suppose vertex i is removed along with the bonds emanating 
from i. We let bj (j,gr ),j = 1, ... ,j(i) denote the remaining 
disjoint connected branches, the index j just labeling the 
branch, Ibj(j,gr) I the number of vertices in bj(j,gr)' and 
d j (j,gr) the length of the longest path in bj (j,gr)' 

Theorem 2.3: Let A I be the least nonzero eigenvalue of 
G(g). Then for any allowable tree graphgr ing, 

AI>sup inf(l + dj(j,gr»-llbj(j,gr) I-I. 
iEg'T j 

(2.4) 

Examples: Suppose g is a ring of n vertices and n bonds 
connecting adjacent vertices, n>2. Removing a single bond, 
we obtain gr' Removing a vertex from the middle of g r or as 
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close to the middle as possible, we obtain AI >4/(n2 
- 1), 

n odd, AI >(4/n(n + 2»), n even, whereas 

Al = 2 - 2 Cos(21T/n)~(4rln2), 

n large. 
As another example, we take g to be as above but with an 

additional vertex at the center of the ring and bonds 
(spokes) emanating from the center out to each ring vertex. 
(There are altogether 2n bonds.) For gr we take the graph 
consisting of all vertices and the spoke bonds only, and then 
remove the center vertex. WeobtainA I>!, whereas A I can be 
calculated to beA I = 3 - 2 Cos(21T/n). In both of these ex­
amples, the estimate exhibits the correct leading n depen­
dence, up to a constant, n-* 00 • 

To begin the proof of the theorem, we have the obvious 
lemma. 

Lemma 2.4: Letgl andg2 be graphs on {1,2, ... ,n} with 
g I Cg2 so thatg I is obtained fromg2 by removing some subset 
of bonds. Then 

(2.5) 

In particular the k th eigenvalue of G(g I) is less than the k th 
eigenvalue ofG(g2)' 

Proof Note that 
, 

G(g2) = G(gl) + I P(i,j) , (2.6) 
{j,j} 

where ~' extends over the removed bonds, and 

{

1, 

P(i,j) kl = - 1, 

0, 

if k = 1= i or j, 

if k = i, I = j or k = j, I = i, 

otherwise. 
(2.7) 

But as an n X n matrix P( i,j) >0 so the lemma follows. 
Thus this lemma enables us to give a lower bound on A I 

ofG(g) by the first nonzero eigenvalue ofG(gr) wheregr is 
any tree that is a subset of g. By Theorem 2.2, we need to 
estimate the least eigenvalue of G(i,gr)' the matrix obtained 
from G(gr) by suppressing the lth row and column. Sincegr 
is a tree, however, removal of the ith vertex disconnects gr 
into the connected branches bj (j,gr) and causes G(i,gr) to 
decompose into a direct sum 

G(i,gr) = (£) Gj (j,gr) , 
j 

where Gj(j,gr) corresponds to the branch bj(j,gr)' The 
least eigenvalue of G(i,gr) is thus the least of those of 
Gj (j,gr)' We have for a normalized vector x, 

n 

(x,G;(j,gr)x)=I(XI -Xk)2+ xL), (2.8) 

where~" extends over all bonds {l,k} in bj (j,gr) and l(j) is 
the vertex in this branch that had a bond ingr connecting to 
vertex i. 

Since x is normalized there is a vertex I such that 

xi> Ibj (j,gr) I-I and a path Xl = XI(1» XI(2»""XI(n) 

= Xj(j) with n<dj (j,gr) such that the expectation [Eq. 
(2.8)] exceeds 
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n 

L (X1(k) - X1(k _ I) ) 2 + X;(j) 
k=2 

>_I_X~>(di(j,gT) + l)- l lbi (j,gT)I-I. (2.9) 
n+l 

The first inequality is an application of Schwarz's inequality. 
Taking the infimum over all branches, we obtain the 
theorem. 

Remark: An alternative approach to obtaining a lower 
bound on A I for G (g) is simply to note that if x is normalized 
and orthogonal to the ground state, then x must somewhere 
change sign so that 

(X,G(g)X) = L (Xi - Xj )2 
{i,j}Eg 

, " 
> L (X; _Xj )2 + L (X; +x;), (2.10) 

{i,j}eg {i,j}eg 

where the first sum extends over all bonds with xixj >0 and 
the second sum extends over all bonds with X;Xj < O. It then 
remains to estimate the right-hand side of the inequality, 

§ 

which amounts to estimating G(g), i.e., the Laplacian on G 

with Dirichlet boundary conditions imposed on some (un­
known) set of bonds. This estimate is analogous to that of 
Cheeger3 who considers the Laplacian on a Riemannian 
manifold. Theorem 2.2 gives additional spectral information 
and, together with Theorem 2.3, gives a sharper estimate on 
AI' 

III. INFINITE PARTICLE STOCHASTIC GENERATORS 

In this section we consider the rate at which the semi­
group generated by 0, Eq. (1.2) of the Introduction, ap­
proaches equilibrium, in the case where the functions c(r,.) 
are nearly constant. (Henceforthg is fixed.) The basicidea is 
that if the c(r,') ~ 1, then the terms in the sum for 0 nearly 
commute and the approach to equilibrium is exponentially 
fast, behaving approximately as e - A", with A I the first non­
zero eigenvalue of G (g) . 

To incorporate the assumption that c(r,.) ~ 1, we set 

c(r,') = 1 + cl(r,') , (3.1) 

with CI (r,·) >0 for convenience. Each G(r) in the sum [Eq. 
( 1.2)] is self-adjoint (we suppress the g and the ® 1 nota­
tion) and so we let Pr (a)( = Pr (a) ® 1) be the projection 
onto the ath eigenspace of G(r) with Aa the corresponding 
eigenvalue (the same for all sites r), observing the conven­
tion that 0 = ,,1,0 <AI <,,1,2< ... <An _ I with n the dimension 
of each G. Finally, we set 

r(r,a;s,{J) = II [Pr(a),cI(s")]IIAp , (3.2) 

where we use the operator norm in C(X). We will think of r 
as the kernel of an operator r on e 1(Zd XX(g») [X(g) is the 
set ofverticesg]. Let IWII denote the norm of this operator. 

Given a function/ on C(X) we set 

III/III = L~)uPIPr(a)/(u)l· 
r a CT 

(3.3 ) 

Theorem (3.1): SupposeA1 > IWI!. Then exp( - to) ap­
proaches equilibrium exponentially fast in the sense that 
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Illexp( -to)glll<exp-t(AI-IWII)lllglll. (3.4) 

Thus the mass gap for 0 is at least Al - IWII. 
Proof: Again, the proof is a straightforward adaptation 

of Liggett's argument for the stochastic Ising model. 1 Sup­
pose that/is the solution to 

(1 + €O)/=g. (3.5) 

Operating on the left of this equation with Pr (a), we obtain 

(1 +€O)Pr(a)/ 

=Pr(a)g-€L[Pr(a), c1(s)]Ap Ps(,8)/, (3.6) 
s.p 

where we have used the spectral representation of G(r). At 
the point U max ' where Pr(a)/ is maximum [recall 
X = " ZdX(g) is compact so this function attains its maxi­
mum], we have that 

(1 + €Aa )Pr (a)/(umax ) 

<Pr (a)g(umax ) + € L r(r,a;s,,8) IPs (,8)j(umax ) I 
s.p 

(3.7) 

by a simple maximum principle argument applied to all the 
r'=FrtermsofO andcI terms [e.g., G(s)Pr(a)/(umax »0] 
and by Eq. (3.2). An analogous inequality holds at U min • It 
follows that (IHI 00 is the sup norm) 

IIPr(a)/lioo <11((1 + €(AI - r))-IP)r(a)glloo (3.8) 

and so 

111/111«1 +€(A1-IWII»-llIlglll· (3.9) 

Iterating this inequality, we obtain 

IlIexp( -to)glll = Illlim(1 + (t/n)O)-nglll 
n-+O 

< lim (1 + (t/n)(AI-IWII»)-nlllglll 
n~oo 

= exp( - (AI -IWII)t )1 IIgll I . (3.10) 

This concludes the proof of the theorem. 
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(Anti-) self-dual Yang-Mills fields may be described by twistors of the same or opposite 
handedness as the fields. These are called the leg-break and googly descriptions, respectively. 
The leg-break twistor space is a complex manifold; the Yang-Mills field is given by a vector 
bundle over this manifold, and massless fields minimally coupled to the Yang-Mills field are 
given by elements of certain sheaf cohomology groups on the manifold. In this paper, the 
structure of the googly twistor space when no Yang-Mills field is present is elucidated. It is 
shown that the googly twistor space is a site. Sites are generalizations of topological spaces, in 
which the primitive concept is that of an open set rather than that of a point. The massless 
fields on space-time are given by the elements of a sheaf cohomology group on the site. Also, 
this site is isomorphic to a leg-break site, consisting of a family of open sets in the leg-break 
manifold. This provides a strong link between the googly and the leg-break spaces. The 
following paper treats the case where a Yang-Mills field is present. 

I. INTRODUCTION 

The successes of gauge theories in recent years have led 
to an increased interest in solutions ofthe Yang-Mills field 
equations. The largest known class of these is given (impli­
citly) by a construction due to Ward. 1

•
2 He showed that, if 

the curvature is anti-f;elf-dual, solutions of the field equa­
tions correspond exactly to certain bundles over twistor 
space lP. Thus, instead of trying to solve differential equa­
tions on Minkowski space, one can specify (essentially free­
ly, locally) transition matrices over twistor space. Similarly, 
self-dual fields are described by bundles over dual twistor 
space lP*. 

This construction also allows a concise characterization 
of massless fields minimally coupled to the (anti-) self-dual 
Yang-Mills field. 1

•
3

•
4 (Such massless fields are important in 

instanton physics.5
) They are given by elements of certain 

sheaf cohomology groups on twistor space. These elements 
are represented by certain equivalence classes of functions 
on lP. (This is called the 'tech representation.) 

It is hoped that twistor theory will be able to provide the 
full, non-self-dual, local solution to the Yang-Mills equa­
tions. As a first step, one wishes to develop a new description 
of self-dual fields on lP (or anti-self-dual fields on lP*). One 
would then combine this with the Ward construction, to ar­
rive at the non-self-dual fields as some sort of nonlinear su­
perpositions of the two. The description of self-dual fields on 
lP is called the googly6 (a cricketing term); by contrast, the 
Ward construction is called the leg-break (ditto). 

Recently, a googly description of massless fields mini­
mally coupled to a self-dual Yang-Mills background has 
been achieved.7

-
9 The idea is this. One starts with the Cech 

leg-break representation of such fields on lP*: 

massless fields~equivalence classes offunctions on lP*. 

Then a new kind of twistor transform is introduced, which 
carries functions on lP* to certain second cohomology ele­
ments on lP. Then the leg-break description induces a googly 
one: 

massless fields~quivalence classes of second cohomology 

elements on P. 

From this, it has been possible to derive a number of explicit 
expressions for the massless fields. They are given by integral 
formulas with a remarkable contour (the "Pochhammer" 
contour 10) , and seem related to certain twistor-diagrammat­
ic calculations of scattering amplitudes. 11

-
13 

This previous googly work focused on obtaining explicit 
expressions for the fields. In the present paper and a sequel, 
we elucidate the general theoretical framework into which 
the googly description fits. We show that googly twistor 
space has the structure of a site (sites are generalizations of 
topological spaces), that there are certain sheaves on the 
site, and massless fields are given by Cech cohomology ele­
ments of the site with coefficients in these sheaves. These 
parallel leg-break results. Furthermore, the Yang-Mills 
field is represented by a bundle over this site. In each case, 
the googly site may naturally be identified with a leg-break 
site. 

These results are easy to establish, being mostly a matter 
of checking definitions. Their significance is that they sys­
tematize all the previous results, and allow one to bring the 
techniques of the theory of sites to bear on the googly prob­
lems. Additionally, these techniques will be useful in areas of 
twistor theory other than the study of googlies. 14 

This paper is divided into five sections. The next one 
reviews the twistor transform used in the googly construc­
tion. The third outlines the relevant elements of the theory of 
sites. Here, generality has been sacrificed for simplicity. 
(The sites we consider have underlying categories that are 
partially ordered sets which have greatest lower bounds of 
pairs of elements.) The reader will find more detailed ac­
counts in Refs. 15-17. The fourth section establishes the site 
structures of googly and leg-break spaces when no Yang­
Mills field is present, and their equivalence; the last section is 
devoted to discussion. In the sequel, we describe the site 
structures when Yang-Mills fields are present. 
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We assume a knowledge of twistor theory18,19 and an 
elementary acquaintance with sheaves, 20 

II. THE T-TWISTOR TRANSFORM 

The core of the googly construction is the following re­
sult.8,9 Let Vbe an open set in P. Then 

U = {WaeP* I the plane Wa C V} (1) 

is Stein, and there is a group 

1!2(v,0'( - 2 - r») (2) 

isomorphic to 
A 

H°(U,O' ( - 2 + r»). (3) 

Here 
A 

O'(n) = O'(n)/polynomials, 

U and V are called corresponding sets, and the isomorphism 
from (3) and (2) is called the (1'-) twistor transform, and 
denoted T. 

The definition of H 2 is given in the Appendix; we shall 
not need it. The following properties will be used, how­
ever. 8.9 If V' C V, then there is a restriction homomorphism 

1!2(v,0'( - 2 - r»)_1!2(V',0'( - 2 - r») 

and 
A A 

H°(U,O'( - 2 + r»)-H°(U',O' ( - 2 + r») 

I J 
1!2(V,0' ( - 2 - r)J-1!2(V',0'( - 2 - r)) 

commutes, where U' corresponds to V', the horizontal maps 
are restrictions and the vertical ones twistor transforms. 

Now set 

1!2(V,0'(n) ®S) =1!2(V,0'(n»)®S, 

for any fixed vector space S. Then there are maps 
za, a laza such that 

A alaWa A 

H°(U,O' ( - 2 + r») _ H°(U,O'a( - 3 + r») 

'I -Z' ,I 
1!2(U,0' ( - 2 - r)) _ 1!2(v,O'aJ - 1- r») 

and 

commute. The maps Z a, a laz a commute with restriction. 
These diagrams are the T-twistor transform analogs of the 
more familiar helicity changing formulas. 21 

Lastly, we make some remarks about the corresponding 
sets. For every point omitted from P in forming V, a plane is 
omitted from p* in forming U. Thus, the U's that arise from 
( 1) are those gotten by omitting families of planes from P*. 
(So not every open set in p* arises as the set corresponding 
to some V C P.) In particular, note that there are arbitrarily 
small U's (take V to be a neighborhood of a plane in P), and 
any open set in p* can be covered by U's. 
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In general, more than one V corresponds to a single U. 
(For instance, any set in P that contains no plane corre­
spondst00inP*.) However, the intersection Vofallthe V's 
corresponding to U will correspond to U, since if any Wa eU, 
the plane Wa will be contained in every V. Then 

V = {zaePlza is on some plane in V}. 

We call V the canonical set corresponding to U. 

III. SITES AND RELATED STRUCTURES 

A.Sltes 

Sites are generalizations of topological spaces, in which 
the primitive concept is that of an open set, rather than that 
of a point. Thus the "open sets" in a site need not be sets of 
points, and they are called the objects of the site. 

The structure of the site is described in two stages. First, 
there is a system of inclusions: we know what it means for 
one object to be contained in another. This is called the un­
derlying category of the site. Then, there is a system of covers: 
we know what it means for a family of objects to cover an­
other object. This is the Grothendieck topology of the site. 

Recall that for a topological space, inclusion satisfies the 
following properties: 

(i) UC U for any open set U; 
(ii) UC V, VC Wimply UC W. 
A category22 Crf is a set of objects (also denoted Crf) 

together with a relation C satisfying 
(i) UC U for any U, 
(ii) UC V, VC Wimply UC W for any U, V, WeCrf. 
We shall also need a notion of intersection. For a topo-

logical space, UnVis the largest set contained in both U and 
V. We shall require that the intersection of two arbitrary 
objects be defined. Thus we assume the following. 

(iii) Let U, VeCrf. Then there is a unique largest Un VeCrf 
with UnVC U, UnVC V; i.e., for any XeCrf with XC U, 
XC V, then XC UnV. 

Examples: (1) Let Crf be the collection of open sets of a 
topological space, and C as usual. 

(2) Let Crf be the integers, and define 

mCn iff m<,n. 

Then mnn = min(m,n). This example does not arise as a 
special case of the first one: if it did, the object that is the 
whole topological space would include every other object, 
but there is no greatest integer. 

( 3) Let Crf be any order set, with C and n as in (2). 

We now turn to the system of covers. Recall that a cover 
of a set U in a topological space is a set {U;} of subsets of U 
with u; U; = U. We have no notion of union, in general, in a 
category, so we cannot use this definition for a site. However, 
covers have three important properties: 

(a) {U} is a cover of U, for any U; 
(b) if {V;} covers U, and {W;} covers V; for each i, then 

J 

{W) covers U; 
J 

(c) if{V) covers Uand WC U, then {V;nW} covers W. 
A cover of an object UeCrf is a collection {U;} of objects 

included in U. A Grothendieck topology23 on Crf is an assign­
ment ofa set of covers to each object in Crf, satisfying (a)-(c) 
(with "cover" replaced by "cover from the assigned set"). A 
category with a Grothendieck topology is called a site. We 
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speak of "the site C(j ," when the Grothendieck topology is 
understood. Also, by a cover, we mean one in the Grothen­
dieck topology unless otherwise noted. 

Examples: (1) A topological space with the usual no­
tion of cover. 

(2) C(j = the integers, mCn iff m,n. The covers are 
given by 

{mJ covers n iff nE{mJ 

(and mj Cn for all mj , of course). 
(3) C(j = an ordered set, inclusion and covers as in (2). 
In examples (2) and (3), the objects are not sets of 

points; the idea of a point appears nowhere in the definitions. 
Also note that no largest object (which would be the analog 
of the whole topological space) need exist; nor any smallest 
object (analog of0). As remarked before, unions need not 
exist either. [In example (2), finite unions-in the sense of 
smallest objects containing a given family of objects-exist, 
but not the infinite unions which would in a topological 
space.] 

There is a further axiom on Grothendieck topologies 
that it will be convenient to impose: 

( d) if ~ is a cover of U in the Grothendieck topology, 
and ~' is any cover of Uwith ~'::> ~,then ~' is a 
cover of U in the Grothendieck topology. 

This may be done without loss of generality, by adjoin­
ing to a Grothendieck topology those sets ~ 1 satisfying the 
above hypothesis. Henceforth we will assume sites have this 
property. 

We now define subsites. These will be analogs of open 
subspaces of topological spaces. 

Let C(j be a site, and C(j 1 a subset of the set of objects in C(j 

such that UEcg I, VC U implies VEcg I. Then cg 1 becomes a 
category with inclusions and intersections inherited from C(j • 

Furthermore, C(j 1 becomes a site with covers inherited from 
C(j. Thus C(j 1 is said to be a subsite of cg . 

B.Sheaves 

Recall that a presheaf r!Jl (of Abelian groups, say) over 
a topological space X is a mapping 

open sets in X _Abelian groups, 

u~r( U,r!Jl), 

together with restriction maps 

Pvu: r( U,r!Jl )_r( V,r!Jl) if VC U, 

satisfying (i) the restrictions are group homomorphisms; 
and 

(ii) if VC U, WC V, Pwv Pvu = Pwu' 
A preshea! r!Jl over a site cg is a mapping 

objects in cg _Abelian groups, 

Ur----+ r( U, r!Jl ) , 

together with restrictions maps, as above, satisfying (i) and 
(ii). We shall often writefjv for Pvuf 

Recall that a presheaf r!Jl over a topological space X is a 
sheaf if (iii) for every cover {UJ of U and j,gEr ( U, r!Jl ), 
thenfj u; = gl U; for all i implies! = g; and (iv) for every cover 
{UJ of U, ifhEr(Ui>r!Jl) andhll0 =jjlU; for all i,j, then 
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there isfEr( U,r!Jl) withh =fiu;. 
A sheaf over a site is a presheaf satisfying (iii) and (iv). 

As usual, we call the elements of r ( U, r!Jl) the sections of r!Jl 
over U. 

C. Cohomology 
v 

We may define the Cech cohomology24 ofa site by ana-
logy to that of a topological space. A subset ~ of the set of 
objects of a site C(j is called a cover for C(j if for every UEcg, 
some cover of U is contained in ~ . A second cover ~ 1 for C(j 

is said to befiner than ~ if UE~' implies UC V for some 
VE~. Note that C(j is always a cover for itself, so every site 
has covers. 

A p-cochain with respect to ~, with coefficients in a 
sheaf Y, is a set of sections, one for every (p + 1) -fold inter­
section of objects in ~ , 

{ho ... ip Er( Uion ... nUip'Y)}' 

with hO ... i
p 

= fl io ... i
p 
I' The set of these p-cochains is denoted 

C P (~,Y). The coboundary operator is 

{ho· .. iJr----+{ Pliohl···ip + II}' 
where P io is restriction to U io' The cocycles Z P ( ~ ,Y) and 
coboundaries B P( ~ ,Y) are defined as usual, and 

HP(~,Y) =ZP(~,Y)/BP(~,Y) 
v-

is the Cech cohomology of Y with respect to ~ . One verifies 
that if ~ , is a finer cover than ~ , there is a canonical homo­
morphism 

HP(~,Y)-HP(~',Y) 

and that such homomorphisms commute on passage to finer 
covers. Thus one can form 

HP(cg,y) =1imHP(~,Y), 
'il-

the Cech cohomology of C(j with coefficients in Y. 

IV. SITE STRUCTURES OF TWISTOR SPACES 

A. Googly twistor space 

In this section, we define googly twistor space as a site. It 
is equipped with certain sheaves; later we shall show that the 
cohomology of these sheaves gives massless fields on space­
time. 

Denote by f1 the site whose objects are open sets in P, 
whose inclusions are the usual ones, but whose covers are 
given by {VJ covers Viff every plane is Vis in some Vi' (The 
verification that this is a Grothendieck topology is elemen­
tary and will be omitted.) We call f1 googly twistor space. 

Let .91 ( - 2 - r) denote the presheaf 

V~.lf2(V,&'( - 2 - r») 

on f1. We claim ..rat ( - 2 - r) is a sheaf, i.e., satisfies (iii) 
and (iv) of Sec. III B. Let {VJ cover V. 

(iii) Suppose j,gEH2(V,&' ( - 2 - r»). Let Vi corre­
spond to Ui and V to fl. Note that {UJ covers U (in the 
usual sense). Tl~n fjv; =gw; implies (r-1)1U; 
= (r-1g)IW Since &' ( - 2 + r) is a sheaf on p., we have 

then r-1 = r-1g, whencef = g, as was to be shown. 
(iv) Let hEl!2(Vi>&'( - 2 - r») be given, with 
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hi v.nV-· = h,·1 V-nv.· Then 
I J J) 

(1'- 'j;) /UinC'J = (1'-1jj) /U,nC'J' 

so there is gEl/0(U,&( - 2 + r») with glu
i 
= 1'-':1:. Then 

1'geIf2(V,d ( - 2 - r») with (rg) lVi = h, as was to be 

shown. 

B. Low-hellclty massless fields 

We call a region in complexified conformally compacti­
fied Minkowski space /3-elementary25 if every /3-plane that 
meets it does so in a connected and simply connected set. Let 
Xbe such a region. We shall give a googly description ofthe 
low-helicity massless fields on X. 

Let & x be the subsite of & whose objects are the open 
sets in P every /3-plane of which meets X, and 

P! = {WaEP*/ w a meets X}. 

We know that4 

H l(P!,d ( - 2 + 1$) )~,.q' s (X), (4) 

the space of helicity s massless fields on X. We will prove 

HI(&X,&,(-2-2s»)~,.q's(X), s<l. (5) 

This formula (together with its counterpart for s> 1, be­
low) is one of the main results of this paper. It is a concise 
characterization of massless fields, and comes close to giving 
us as good an understanding of the googly description as we 
have of the leg-break. 

The proof of the isomorphism really follows from the 
definitions. Let r = {VJ be a cover ~ x' Then ~ = {Ui 
corresponding to VJ is a (Stein) cover ofP!. Since Uin~ 
corresponds to V;n~, there is a bijection of cochains 

A 

CP(~,d( - 2 + 1$»)~CP(r,&'( - 2 - 1$»), 

whence 

HP(~,&( - 2 + 2s»)~HP(r,&'( - 2 - 2s»). 

However, if s < 1, 

&( -2+2s)~d( -2+2s) 

and 
HP(~,d( - 2 + 2s»)~p(r,&'( - 2 - 2s»). 

The inductive limit in the definition of H is then trivial, and 
the isomorphism (5) results from (4). 

C. Hlgh-helicity massless fields 

The previous analysis must be modified for helicities 
> 1, because in that case 

&( - 2 + 2s)~d( - 2 + 2s) 

and, in general, 

Hl(& x' &'( - 2 - 2s»)~l(P!,&( - 2 + 2s») 

~,.q's (X). 

There are several ways to do this; we give only one here. We 
shall define a new sheaf on ~ x whose cohomology is 
,.q's (X). For the moment, we take s = 1, for simplicity. 

First note 

HO( U,tJ)~Ho(u,da( - l))lHo(U,d[aPJ ( - 2»), (6) 
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whenever U is Stein. This follows from the exact sequence of 
sheaves on P*: 

W,8 W" 

d[aPJ( _ 2) --+ d a( - 1) --+ d-o. 

We know how to twistor transform the groups on the right of 
( 6 ): we define a presheaf fji} ( - 4) on ~ x by 

V~.lf2(V,da( - 3»)/.lf2(V,d[aPJ( - 2»), 

where the quotient is formed with respect to a laza. As 
before, this is a sheaf, and an argument parallel to the pre­
vious one gives 

H l( & x,fji} ( - 4) )~,.q' I (X). 

For higher helicities, one has 

H 1(& x,fji} ( - 2 - 2s»)~,.q's (X), 

where fji) ( - 2 - 2s) is the sheaf 

V~.lf2(V,&(al".a2'-I)( _ 3»)/(v,&[Pa.ja2a3,,·a><-I( - 2»). 

D. Equivalence with leg-break space 

The results of the previous three subsections were estab­
lished by "twistor transforming" properties ofP* to P. The 
reader has probably already noticed close correspondences 
between the sites p* and & and the sheaves tJ ( - 2 + 2r) 
and &'( - 2 - 2r), fji} ( - 2 - 2r). In fact, they are very 
nearly identical, as we now show. 

Let f!ll * be the site whose objects are those sets in p* that 
correspond to open sets in P, and whose inclusions and cover 
are as usual. Since intersections in p* and f!ll * are the same 
and every cover in 9 * is a cover in P*, tJ ( - 2 + r) and 
A 

tJ ( - 2 + r) are sheaves on f!ll *. 
Let !J be the site whose objects are those objects Ve& 

that are canonical sets (i.e., every point in V is on a plane in 
V, cf. Sec. II), with inclusions and covers as usual. Note that 
intersections in !J are not the same as in &. This is because 
there may be points common to VI and V2 that do not lie on 
common planes. Nevertheless, one has 

VI n V2 = VI n V2 g [§ 

(where the underscripts to n indicate the category in which 
intersection is taken). Also note 

.lf2(V,d( - 2 - r»)~.lf2(V,&( - 2 - r»), 

since both are isomorphic toHO(U,&( - 2 + r»). For these 
observations and the fact that every cover !J is a cover in ~ , 
it follows that &' ( - 2 - r), fji} ( - 2 - r) are sheaves on 
!J. 

We know from Sec. II that the objects in f!ll * and !J are 
in one-to-one correspondence, and that UI C U2 iff VI C V2, 
so the underlying categories of these sites may be identified. 
From the definition of covers in !J (which is that of &, cf. 
Sec. IV A), one sees that the covers may be identified as well. 
Thus f!ll * and [J are equivalent as sites. 

The sheaf '& ( - 2 + r) over 9* may be identified with 
&' ( - 2 - r) over [J. and similarly d ( - 2 + 2s) over f!ll * 
with fji} ( - 2 - 2s), s> 1. This is immediate because 1'identi­
fies sections over identified objects. 

LetXbe ap-elementary region in complexified confor-
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mally compactified Minkowski space, f1 x the subsite of f1 
whose objects are those in f1 every p-plane of which meets 
X, and 9! the subsite of 9 * with objects 

{UE9*jevery point in Uis ap-plane meeting X}. 

Then, arguments parallel to those of the preceding subsec­
tions give 

'" g's (X):::=:::H 1(9!,d( - 2 + 2s») 
"'1-:::=:::H (Y x' .ru"( - 2 - 2s»), s < I, 

JI(f1 x' fjj (- 2 - 2s»), s>1. 

Thus, a deSCription of massless fields can be recovered from 
either the leg-break site 9 * or its googly equivalent f1. 

The construction of f1 from Y may seem ad hoc, but is 
in fact a special case of a very natural and general construc­
tion. Let us suppose we are given a site ~ and a sheaf.Y on 
~ , which we think of as being the structure sheaf on ~ (i.e., 
the "most important" class of functions on ~). Then if the 
restriction 

(7) 

is an isomorphism for two objects U, VE~ , then U and V are 
indistinguishable by sections over them in .Y. It is then natu­
ral to define an equivalence relation on the set of objects in 
~ , generated by U - V if (7) is an isomorphism.26 

This is essentially how (f1,.J<t ( - 2 - 2s») arises from 
(Y,.J<t( - 2 - 2s»): one has V1- V2 if J:\ = V2• In general, 
the construction of the underlying category CZ and its covers 
is a little involved technically, and we shall not pursue it. 

V. DISCUSSION 

At the heart of the googly construction is the elementary 
observation that points in p* correspond to planes in P. The 
identity of the googly and leg-break sites is only an extension 
of this: sets of points in p* correspond to sets of planes in P. 
The set of points is an object in 9 *; the set of points on a 
family of planes is an object in f1. The virtue of the site­
theoretic approach is that it systematizes previous results 
and provides a useful framework. 

The identity of the sheaves over the sites is remarkable: 
after all, elements of H 2 are quite different from ordinary 
functions (cf. the Appendix and Refs. 8 and 9). It is this 
difference that is responsible for the novelty of the googly 
integral formulas for massless fields.7-9 

Another difference worth noting is that between 9 * 
and P*: not all open sets in the latter are objects in the former 
(cf. Sec. II). Still, as we know, 9* has enough objects to 
satisfactorily describe massless fields, and indeed, every 
open set in P* is covered by others that are objects in 9 * . 

The prominence of planes, as opposed to points, in the 
googly construction is unusual but not surprising. Points 
would correspond to planes in the dual leg-break space. One 
knows that, if a self-dual Yang-Mills field is present, such 
planes will generically encounter singularities where the 
Ward bundle is not defined. l In the gravitational case, when 
a space-time with self-dual Weyl curvature is given by a 
curved dual leg-break twistor space, this space itselfwill not 
in any obvious way contain any planes.27 Thus points in leg­
break spaces are more natural than planes; so planes in 
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googly spaces will be more natural than points. 
We close by listing some of the work that remains to be 

done in the site-theoretic study of googlies. 
The calculus of the sheaves on the googly sites and their 

cohomology groups must be more fully developed, in paral­
lel to the extensive calculus that exists for sheaves over topo­
logical spaces. Much of the general theory has been worked 
outIS- 17: it remains to specialize it to twistor theory. 

The relation of these techniques of the googly map ap­
proach 6.28 to the googly problem should be investigated. One 
of the reasons this approach has not had more success is its 
lack of a clear framework; perhaps sites will help. 

The use of sites for gravitational googlies (i.e., googly 
twistor spaces describing space-times with self-dual Weyl 
curvatures) should be developed. 
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APPENDIX: DEFINITION OF HR 

Let cP be a pseudo-Hermitian form of signature 
+ + + - onP*,and 

U = {WaEP*jct>( Wa ) <O}, 
V = {zaEPIct>-I(za) >O}. 

Then U and V correspond in the sense of Sec. II. Here U is 
called a regular ball. It is known that 

'" HO(U,d( - 2 + r»):::=:::H 2(V,d( - 2 - r») 

and that the isomorphism commutes with restriction.7-9.29 

Now let Vbe any open set in P. Put 

r = {V..t C V j V..t corresponds to a regular ball}. 

A googly two-/unction with coefficients in d ( - 2 - r) is a 
set 

{cp..tEH2(V..t,d( - 2 - r»)!V..tEV} 

such that 

cP ..t IV" = cP /' if V/, C V..t . 

The set of all such googly two-functions is 

~2(V,d( - 2 - r»). 

For more details, see Refs. 8 and 9. 

IR. S. Ward, Curved Twistor Spaces, Ph.D. thesis, University of Oxford, 
1977. 

2R. S. Ward, Phys. Lett. A 61, 81 (1977). 
3R. Penrose and R. S. Ward, "Twistors for flat and curved space-time," in 
General Relativity and Gravitation, edited by A. Held (Plenum, New 
York, 1980). 

4M. O. Eastwood, R. Penrose, and R. O. Wells, Jr., Commun. Math. Phys. 
78,305 (1981). 

sO.'t Hooft, Phys. Rev. D 14, 3432 (1976). 
"Much of the work on googlies has been for self-dual gravitational rather 
than Yang-Mills fields. Reference 9 contains an extensive list of googly 
papers. 

7Preliminary accounts of these ideas appear in A. D. Helfer, Twistor News­
lett. 16, 35 (1983); 17,45 (1984). 

8 A. D. Helfer, A New Approach to Curved Twistor Spaces, Ph.D. thesis, 
University of Oxford, 1985. 

Adam D. Helfer 2482 



                                                                                                                                    

9 A. D. Helfer, "A prosaic approach to googlies," University of Pittsburgh 
preprint, 1985. 

I~. T. Whittaker and G. N. Watson, A Course in Modern Analysis (Univer-
sity, Cambridge, 1920), 3rd ed., pp. 256-257. 

JlA. P. Hodges, Proc. R. Soc. London Ser. A 375, 207 (1983). 
12A. P. Hodges, Proc. R. Soc. London Ser. A 386,185 (1983). 
'3A. P. Hodges, Twistor Newslett. 16,41 (1983). 
14A. D. Helfer, "Sites and the twistor description of massless fields," in 

preparation. 
15M. Artin, Grothendieck Topologies (Harvard, Cambridge, 1962). 
I·P. T. Johnstone, Topos Theory (Academic, London, 1977). 
17M. Artin, A. Grothendieck, and J.-L. Verdier, Theorie des Topos et Coho­

mologie Etale des Schemas, Springer Lecture Notes in Mathematics, Vols. 
269-270 (Springer, Berlin, 1972). 

18R. Penrose, "Twistor theory, its aims and its achievements," in Quantum 
Gravity, edited by C. J. Isham, R. Penrose, and D. W. Sciama (Clarendon, 
Oxford, 1975). 

'9Advances in Twistor Theory, edited by L. P. Hughston and R. S. Ward 
(Pitman, London, 1979). 

2°R. Godement, Topologie Algebrique et Theorie des Faisceaux (Hermann, 

2483 J. Math. Phys., Vol. 27, No. 10, October 1986 

Paris, 1964). 
21R. Penrose, "Twistors as helicity raising operators," in Ref. 19. 
221n fact, the notion of a category is very much more general than this [see, 

e.g., S. Mac Lane, Categories/or the Working Mathematician (Springer, 
New York, 1971)], and sites are usually defined much more generally. 
We limit ourselves to the present definition to avoid technicalities and 
keep close contact with familiar concepts. 

23What we call a Grothendieck topology is usually called apre-topology. For 
our categories, the concepts are equivalent. 

240ther, more functorial, cohomologies may also be defined (Refs. 15-17). 
We will not need them, and, for simplicity, limit ourselves to this. 

2'Compare Ref. 4. 
2·0ne might wish to require more for equivalence; for example, isomor­

phism of all cohomology groups. For !§ and £!ll*, it is not hard to see that 
this is trivially fulfilled. 

27R. Penrose, Gen. Relativ. Gravit. 7, 31 (1976). 
28R. Penrose, Twistor Newslett. 11, 31 (1981). 
2~. G. Eastwood, "The generalized twistor transform and unitary repre­

sentations ofSU(p,q)," University of Oxford preprint, 1984. 

Adam D. Helfer 2483 



                                                                                                                                    

Sites and googly twistor spaces. II. Yang-Mills fields 
Adam D. Helfer 
Department of Mathematics and Statistics and Department of Physics and Astronomy, University of 
Pittsburgh, Pittsburgh, Pennsylvania 15260 

(Received 20 September 1985; accepted for publication 28 May 1986) 

(Anti-) self-dual Yang-Mills fields may be described by twistors of the same or opposite 
handedness as the fields. These are called the leg-break and googly descriptions, respectively. 
The leg-break twistor space is a complex manifold; the Yang-Mills field is given by a vector 
bundle over this manifold; and massless fields minimally coupled to the Yang-Mills field are 
given by elements of certain sheaf cohomology groups on the manifold. In the previous paper, 
we analyzed the structure of the googly twistor space when no Yang-Mills field is present, and 
showed that it was a site. (Sites are generalizations of topological spaces, in which the primitive 
concept is that of an open set rather than that of a point.) In this paper, we treat the case 
where a gauge field is present. We show that the field is represented by a vector bundle over the 
site, and that massless fields minimally coupled to the Yang-Mills field are given by the 
elements of a sheaf cohomology group on the site. Also, this vector bundle is isomorphic to one 
over a leg-break twistor site. This provides a strong link between the googly and the leg-break 
spaces. 

I. INTRODUCTION 

This is the second of two papers outlining the structure 
of googly twistor spaces. These spaces describe self-dual 
Yang-Mills fields with twistors of the opposite-to-usual 
handedness (purely right-handed fields with left-handed 
twistors or vice versa). It is hoped that a combination of 
googly techniques and the usual ones will lead to the general 
local solution of the source-free Yang-Mills equations as a 
nonlinear superposition of left- and right-handed pieces. 

The previous paper! described the structure of googly 
twistor space when no Yang-Mills field was present. The 
space is a site (sites are generalizations of topological spaces) 
equipped with certain sheaves. The cohomology of these 
sheaves over appropriate subsites described massless fields 
on space-time. This parallels the usual ("leg-break") twistor 
description of massless fields as cohomology elements of 
sheaves on twistor space. 

In this paper, we include the effects of the self-dual 
Yang-Mills field. We show that this field is given by a bundle 
over the googly site, and that massless fields minimally cou­
pled to the Yang-Mills field are given by cohomology ele­
ments of sheaves "twisted" by the bundle. Again, these are 
parallel to the leg-break results. As in the previous paper, we 
are concerned with the structure of the googly space rather 
than with explicit computational techniques (see Refs. 2-4 ). 

We assume the results and notation of the previous pa­
per, and an acquaintance with the Ward construction5

•
6 (the 

usual twistor description of self-dual fields). 

II. THE GOOGL Y CONVOLUTION 

We describe here the googly operation corresponding to 
the multiplication of hoi om orphic functions on the leg-break 
space. Over any open set UCP*, there is a multiplication 

rcU,d) Xr(U,d)-r( U,d), 

(f,g)~fg, 

which, of course, commutes with restrictions to subsets. We 
define the googly counterpart of this as 

r(V,~ ( - 4))Xr(V,~ ( - 4))-r(V,~ ( - 4)), 

(a, (3)~*(3 = 1'( (1'-!a) (1'-!{3)), 

and call it the googly convolution. An explicit formula is giv­
en for it in Ref. 2. We will not need this here. 

III. SOME MORE SITE THEORY 

In this section, we introduce some more site-theoretic 
analogs of familiar topological ideas. Our aim is to keep the 
technicalities to a minimum. 

We first discuss the sheaves of sections of vector bundles 
over sites. We do this rather than dealing directly with vector 
bundles over sites because it is much less involved to formu­
late the local triviality condition for the sheaves of sections. 
For a vector bundle over a topological space, the vector­
space structure of the fibers is reflected in the fact that the 
sheaf of continuous sections of the vector bundle is a module 
over the sheaf of continuous functions. This is how such 
sheaves are defined on sites, as sheaves of modules over dis­
tinguished sheaves. 

The second main idea we introduce is that of a contin­
uous functor of sites, which is the counterpart of the concept 
of a continuous map of topological spaces. 

A. Sheaves of rings and modules 

Recall that a ring is a set R with two binary operations 
+ ,. such that (i) + and· are associative, + is commuta­

tive, and· distributes over +; and (ii) there is an additive 
identity element OER, and every aER has an additive inverse 
- aER. We will generally omit the dot for multiplication. If 

multiplication is commutative, the ring is commutative; if 
there is a multiplicative identity lER, the ring is said to pos­
sess a unity. All our rings will be commutative rings with 
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unity, and we will just call them rings, for short. 
Examples: The real numbers, the complex numbers, the 

integers, and the ring of continuous real-valued functions on 
an open set in a topological space. Note that, in the last two 
cases, multiplicative inverses of nonzero elements do not ex­
ist. This is what distinguishes rings from fields. (The reals 
and the complex numbers are fields.) 

A homomorphism from a ring R to a ring S is a map that 
preserves the ring structure, i.e., products, sums, identities, 
and inverses. 

A sheaf of rings7 is a sheaf [!Ii such that, for all U, 
r( U,[!Ii) is a ring and, if VC U, then the restriction 

r( U,[!Ii )--r( v,[!Ii) 

is a ring homomorphism. 
Examples: (1) The sheaf <eo of continuous real-valued 

functions on a topological space, the sheaf <e QO of smooth 
real-valued functions on a smooth manifold, and the sheaf (1 

of holomorphic functions on a compl~ manifold. 
(2) The sheaf ~ ( - 4) on f1 or f1 , with multiplication 

*. 
Let R be a ring. A module over R is a set M together with 

two operations, 

+ : M XM--M (addition), 

. : R XM--M (scalar multiplication), 

such that (again, sometimes omitting the dot for multiplica­
tion) (i) addition is commutative and associative, there is an 
additive identity OeM, and every peM has an additive in­
verse - peM; (ii) scalar multiplication distributes over ad­
dition; 

(iii) r(sp) = (rs)p, for all r,sER, peM; 

and 

(iv) l.p = p, O·p = 0, for all peM. 

Observe that a module is to a ring as a vector space is to a 
field. 

A module homomorphism is a map of modules preserv­
ing module structure, and a sheafofmodules7 ..-It over a sheaf 
of rings [!Ii has 

r ( U • ..-It) a r( U.[!Ii) -module. 

for all U, and restrictions are module homomorphisms. 
Example: Let E be a vector bundle over a topological 

space. Then the sheaf ~ of continuous sections of E is a 
module over <eo. Similarly. one can work with smooth mani­
folds. vector bundles. and sections, or complex manifolds 
and holomorphic vector bundles and sections. 

If Mis a module over R, and there arepl,. ..• Pn eM such 
that any peM can be expressed as 

p = r l PI + ... + rn Pn' 

for some rl •... ,rn ER. {Pl>"'" Pn} is said to generate M. The 
smallest n such that this is true is called the rank of M. These 
concepts are the module analogs of span and dimension for 
vector spaces. 

Examples: ( 1 ) Let Mbe the module of global sections of 
a vector bundle E over a topological spaceX. (R is the ring of 
globally defined continuous real functions on X.) In general, 
the rank of M is greater than the dimension of the fiber of E, 
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because sections of E will necessarily have zeros. At a zero, 
the section will not help to span the fiber. 

(2) Another important example of an R -module is R n. 

In particular, [!lin is a sheaf of modules over [!Ii. 
We close this subsection with some remarks about ma­

trices over R. First, R n' is the set of all n X n matrices with 
entries in R. Matrix multiplication is defined in the usual 
way. It is associative. There is an identity element, I on the 
diagonal and zero elsewhere. The determinant may be de­
fined in the usual way; it is an element of R. A matrix is 
nonsingular if its determinant has a multiplicative inverse in 
R. Nonsingular matrices have unique inverses. One may, of 
course. consider sheaves of matrices. 

Examples: Let [!Ii be a sheaf of rings. Then [!lin' is the 
sheaf of n X n [!Ii -valued matrices. One can also consider the 
sheaf of such matrices with determinant unity. 

B. Vector bundles 

Let E be a vector bundle over a topological space X. The 
local triviality of E is reflected in the following property of 
the <eO-module ~. 

(i) There is a cover ~ = {UJ of X such that r( Ui'~) 
has finite rank for all i. For fine enough covers. a generating 
set on Ui restricts to one on any UC Ui ; also. the rank is 
independent of i and of ~ : it is called the rank of the bundle. 

It is easy to show that this condition of an arbitrary <e 0
_ 

module ~ implies ~ arises as the sheaf of sections of a vector 
bundle (unique up to isomorphism). Choose a sufficiently 
fine cover {Uj }, and letpja' a = t, ... ,n. be the generating set 
on Ui • The patching relation over Ujn~ is given by (the v~ 
are fiber coordinates over Uj ) 

v~ Pia I C'J = vj J.lja I u, 

(summation convention on a but not i.j). 
The analogous results for smooth vector bundles over 

smooth manifolds and holomorphic vector bundles over 
complex manifolds also hold. In these cases, the sheaves of 
rings are <e QO and (1. The sheaves <eo, <e co, and & play such 
fundamental roles-can indeed be regarded as defining their 
spaces-that they are called structure sheaves. Thus a mod­
ule ~ over the structure sheaf is the sheaf of sections of a 
vector bundle iff it satisfies (i). 

Now let <e be a site. and [!Ii be a distinguished sheaf of 
rings over <e; we shall call [!Ii the structure sheaf. By the 
sheaf of sections of a vector bundle over the site <e with struc­
ture sheaf [!Ii. we mean an [!Ii -module ~ satisfying (i) (with X 
replaced by <e ). 

~ is called trivial if it is isomorphic to [!lin for some n 
(necessarily the rank of ~). For ~ arising as a sheaf of 
sections of a vector bundle E. this is the same thing as saying 
that E is trivial. (We omit the verification of this. which is 
easy.) 

We now show how to explicitly construct sheaves of 
bundles over sites from "transition functions," and vice 
versa. 

Let ~ = {Uj} be a cover of <e. and suppose we are 
given a set of nonsingular [!Ii -valued matrices 

f = {fijEr( Uin~.[!Iin')}, 
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satisfying 

fij = fJi !, fij jjk = hk on U/nUpUk· 
These will be the transition matrices defining a sheaf ff I: 

'P 
r( U,ff/ ) = ker E& r( UnUjJ~n)---+ E& r (UnU.nU. ~n) 

i i,}' J' , 

where 

'P 

{J.LJ ~{J.Li - hj J.L). 

More abstractly, let ~7 be the restriction of ~n to u,., ~'!. its 
• • I l) 

restnctlOn to Uin~. Then ff I may be defined by the exact 
sequence 

'P 

~ff I ---+ E& f/t 7---+ E& ~7·· 
i i,} g 

It is easy to see that ff I satisfies (i) with respect to ~. 
Contrariwise, if a bundle ff is given satisfying (i), 

choose a cover ~ of ~ so that r ( Ui , ff) has finite rank n for 
every Uj E ~. Let J.L ia be a generating set for r( Ui , ff) as 
before. Then, on Uin~, 

J.Lja = hjallJ.Ljll 

for some matrix hj. It is easy to see that {hj} satisfies the 
conditions above. 

In parallel with the usual result for vector bundles over 
topological spaces, one can easily derive the condition that 
two sets of transition matrices f = {fi'!}, g = {gi"r} (with 
respect to two covers) give isomorphic sheaves of sections, 
ff I'==!. ff s' The result is that on a sufficiently fine cover 
~ = {Ui } there should be nonsingular matrices 

{tiEr( UjJf/tn')} 

such that 

hj = t ;- 1 gijtj 

(no summation implied). 

C. Tensor products 

We will now define tensor products of sheaves of mo­
dules on a site. First, we need a technical definition. 

Let 9 be a presheaf on a site ~. The sheaf associated to 
9 is 

U~limHO(~,9), 
'W 

where ~ ranges over the covers of U. It is not hard to see 
that this is indeed a sheaf. 

Now let ~ be a sheaf of rings over ~ , and let..?, vii be 

f/t-modules. The tensor product..? -,vii is the sheaf asso­

ciated to the presheaf 

U~r(U,..?) ® r(U,vII), 
r(U,9l') 

where the tensor product of modules is defined analogously 
to that of vector spaces. 

D. Continuous functors 

2486 

Recall that a map of topological spaces 

I: X---+Y 
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is continuous iff the inverse image of every open set in Y is 
open inX. (In general, the image of an open set inX need not 
be open in Y.) A continuous map of sites will thus be de­
scribed by an analog of I-I. Note that I-I preserves inclu­
sions, intersections, and covers: 

(i) Uc Vimplies I-I( U) C/-1
( V); 

(n) {U;}covers Uimplies{f-I( Ut )}covers I-I( U); 
(iii) I-I( UnV) = f-I( U)nl- I( V). 

For topological spaces, (i)-(in) hold because 1-1 arises 
from a mapping of points in X to points in Y. For sites, they 
will be extra hypotheses. 

A continuous functor of sites, denoted 

I: ~---+g 
is by definition a map, denoted f- 1,from the set of objects of 
g to those of~, satisfying (i)-(iii).8 

Examples: (1) A continuous map of topological spaces 
gives rise to a continuous functor between their sites. 

(2) Let ~ be the site arising from the topological space 
of real numbers, and g be the non-negative integers as in 
example (3) of Sec. II A of the previous paper. 1 Define 

f-1(n) = ( - n,n). 

It is easy (and left to the reader) to verify (i)-(iii). 
If f: X ---+ Y is a continuous map of topological spaces, 

and s: Y ---+Z is another, the pullback ofs to X via f,J* s, is the 
composition sf: X ---+Z. The idea extends readily (if a little 
technically) to sheaves over sites. 8 

Let I: ~ ---+g be a continuous functor of sites, and Y a 
sheaf over g. Define a presheaf 1; Y over ~ by 

U~ lim 
Ve9 

Ue/-I(V) 

r(V,Y). 

The sheaf associated to this presheaf (see Sec. III C, above) 
is the pullback 01 Y to ~ via f, denoted f* Y. 

Examples: (1) Pullbacks of sheaves over topological 
spaces via continuous maps. 

(2) Let ~ be the usual site associated to the topological 
space of real numbers, g the site of non-negative integers, 
and f: Crfj ---+g as above. Define a sheaf Y on g by 

r(n,Y) = an 
(where we understand RO = {o}) with restriction from an 
to Rmby 

(x', .. "xn)~(x', ... ,xm), if O<m<n, 

~O, if m =0, 

The pullback of Y to ~ is given as follows. If 0 is open in R, 
then 1;Y is 

O~ lim Rn. 
ne9 

ac( -n,n) 

This limit is an , where n is the least integer such that Ixl < n 
for all xeO. It is easy to verify that this is a sheaf, so 
I*Y=/,Y. 

IV. THE GOOGL Y BUNDLE AND MASSLESS FIELDS 

In the leg-break picture, a self-dual Yang-Mills field is 
represented by a vector bundle over a region ofp· (see Refs. 
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5 and 6). The vector bundle is required to be trivializable 
over those lines in p* representing points in space-time 
where the field is to be defined. The set of such points, of 
course, depends on the problem under consideration. (It 
may be Minkowski space, or Euclideanized space-time, or 
some other region.) We call this the Ward triviality condi­
tion. 

Massless fields minimally coupled to the Yang-Mills 
background (i.e., test fields, which do not produce a back 
reaction on the gauge field) are described by cohomology 
elements: 

HI(p~,E®&( -2+2s») 

is the space of fields of helicity s on the region X in space­
time.6 Here E is the Ward bundle. Of course, this group is the 
same as 

HI(P~,?f ® &( - 2 + 2s»), 

where ?f is the sheaf of holomorphic sections of E. 
In this section, we present the googly counterparts of 

these results. Throughout, we regard f!IJ ( - 4) on [§ x or 
~ x as a ring with multiplication given by *. Also, for conve­
nience, we let 

f!IJ( -2-1$) =.Jd( -2-1$), s<l, 

so f!IJ ( - 2 - 2s) is the "twistor transform" of 
&( -2+1$) foralls. 

A. The googly bundle 

Let Y x, ~ x' p~, and p~ be as in the preceding article. 
Our goal is to show that the sheaves of sections of the Ward 
bundles over p~ may be identified naturally with sheaves of 
sections of various bundles over the other sites. We begin by 
ignoring the Ward triviality condition. 

Lemma: There is a natural one-to-one correspondence 
between isomorphism classes of f!IJ ( - 4) -modules satisfy­
ing the local triviality condition [Sec. III B (i) ] on Y x and 
~x. 

Proof." This follows from the fact that 

l!2(V;,f!IJ ( - 4»)~2(Vi,f!IJ ( - 4»)~2(Jj,f!IJ ( - 4») 

if Vi = J:j. The argument is straightforward and the details 
will be omitted. 

Proposition: Between any two of the following sets of 
isomorphism classes of modules over sites satisfying the lo­
cal triviality condition [Sec. III B (i)], there is a natural 
one-to-one correspondence: 

(a) f!IJ ( - 4)-modules on Y x' 

(b) f!IJ ( - 4)-modules on ~ x' 

(c) &-modules on &~, 

(d) &-modules on P~. 

Proof." We have the bijection between (a) and (b) by the 
previous lemma; since (& ~, &) may naturally be identified 
with (9i x' go ( - 4)), there is a bijection between (b) and 
(c). The one between (c) and (d) follows from the fact that 
the sets in p~ that are objects in & ~ suffice for the trivializa­
tion of any holomorphic vector bundle. 

Since we know that (d) is equivalent to the set of iso-
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morphism classes of holomorphic sections of holomorphic 
vector bundles on p~, this proposition identifies the sheaves 
of sections of such vector bundles with googly structures. 

We will, in what follows, denote the leg-break sheaf of 
modules ?f, and its corresponding googly sheaf Y. 

B. The triviality condition 

For the leg-break space p~, the triviality condition is 
that, for certain points xEX, the vector bundle E (or equiv­
alently its sheaf of sections ?f) should be trivializable over 
Lx. Restriction to Lx is the same thing as pulling back via the 
inclusion map 

s: Lx-P~, 
so we may express the triviality condition as 

HO(Lx'S *?f k::::!.H0(Lx'S *&n), (1) 

where n is the rank of ?f. We now translate this to a state­
ment about googlies. 

Let .? x denote the site associated to the topological 
space of planes in P containing the line corresponding to x. 
Since planes in P containing x are naturally identified with 
points in Lx C P*, .? x = Lx. We use.? x to indicate we are 
thinking of a structure in googly rather than leg-break space. 

There is a continuous functor 

;: '?x-Yx, 
given by; -I( V) = {planes in V containing x}. (We omit 
the proof, which is elementary, that this is indeed a contin­
uous functor.) Then the Ward triviality condition at x is 

where n is the rank of Y. 
We sketch the proof, the details of which are not hard to 

supply. One may work equally well with the continuous 
functor 

;: .?x-~x 
defined analogously. Similarly, let 

t: Lx-&~ 
be the analog of S' above. Then 

" -'?x-[Jx 

t t t 
Lx-&~ 

commutes, where the vertical arrows represent the natural 
identifications of the sites. Since this also naturally identifies 
(the isomorphism classes of) ?f and Y, (2) follows from 
( 1 ). Also, ; * f!IJ ( - 4) is isomorphic to the sheaf of holo­
morphic functions on Lx. 

c. Massless flelds 

From the leg-break results and our previous machinery, 
we have the following. Massless fields of helicity s on X, mini­
mally coupled to the self-dual Yang-Mills background, are 
given by the elements of 
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Hl(~",y~~( -2-18») 

or similarly for !J x' Of course, these are fields in the repre­
sentation defined by the Ward bundle. Fields in other repre­
sentations.can be obtained, as in the leg-break case, by re­
placing Y with the sheaf of sections of another 
representation (e.g., tensor products of 31). 

v. DISCUSSION 

This paper and the preceding one provide a coherent 
framework for the study of googly twistor spaces. These pa­
pers have been concerned with the general structures of such 
spaces; another (Ref. 3) gave many explicit calculational 
techniques. 

Within this framework, it may be possible to develop 
aspects of googly Yang-Mills theory that have been in need 
of such a structure. Perhaps most important would be to 
understand the googly maps that are supposed to character­
ize the points in the space-time bundle on which the gauge 
group acts. 2. This would, one hopes, connect with gravita­
tional googlies (twistor spaces describing gravitational fields 
with self-dual curvatures). In this case, the googly maps are 
supposed to give the space-time points from a knowledge of 
the twistor Space.9,l0 Indeed, many ofthe techniques of the 
present paper generalize to gravitational googlies, as will be 
discussed in a future publication. 

The googly was intended to complement, rather than 
compete with, the leg-break. Despite this, it is reasonable to 
compare their usefulness. It seems that, as an abstract tool 
for classifying Yang-Mills solutions (instantons, etc.), the 
googly will not be as useful. This is because, for leg-breaks, 
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one has a body of classical results about holomorphic vector 
bundles over complex manifolds to draw on; whereas, for 
googlies, there are (at present) fewer site-theoretic tools. On 
the other hand, it seems possible that googly techniques for 
computing fields will be as useful as leg-break ones,2,3 

Lastly, it is possible that sites Will be useful in uniting the 
leg-break and googly to describe non-self-dual fields. This is 
the next major problem in the twistor description of Yang­
Mills theory. 
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Comment on a paper by Espindola, Teixeira, and Espindola [J. Math. Phys .. 27, 
151 (1986)] 

Sergio Hojman 
Centro de Estudios Nucleares, Universidad Nacional Aut6noma de Mexico Circuito Exterior, C u., 04510 
Mexico, D. F., Mexico 

(Received 2 April 1986; accepted for publication 7 May 1986) 

It is shown that the criterium to decide whether two Hamiltonians are equivalent given by 
Espindola et al. [0. Espindola, N. L. Teixeira, and M. L. Espindola, J. Math. Phys. 27, 151 
(1986)] is incorrect. 

I. INTRODUCTION 

Recently, Espindola et al. devised a procedure to gener­
ate equivalent Hamiltonians in two dimensions starting 
from the Hamilton-Jacobi equation. I The purpose of this 
comment is to show that such a procedure does not, in gen­
eral, yield correct results. 

In what follows Ref. 1 is briefly summarized. 
(a) Definition: Two Hamiltonians 

H(ql,q2,PI'P2) and H(ql,q2,PI,P2) 

are equivalent if the Hamilton-Jacobi equations generated 
by them yield the same solutions for the generating function 
S. 

(b) Statement: if is equivalent to H iff H is any (time­
independent) constant of the motion generated by Hand 

J a(H,H);¢O. 
a(PI,P2) 

I will show that (b) yields, in general, incorrect results. 

II. COUNTEREXAMPLE 

Consider a particle moving in a two-dimensional central 
potential 

H = ! (pi + p~) + V(qi + q~). 
One of its time-independent constants of motion is 

L z = qlP2 - Q2P\, 

DefineH = Lz = ql P2 - q2PI' which is equivalent toH 
according to the statement (b) given in Ref. 1. It is straight­
forward to see that the Hamilton-Jacobi equations generat­
ed by H andH do not have the same solutions. Moreover, it is 
easy to understand why H and H are not equivalent. 

(i) His regular [det(a 2H lapiap) #0] whileH is sin­
gular [det(a 2H lap;apj) = 0]. 

(ii) H is a constant of motion for any central potential, 
while H has detailed information about what potential V we 
are dealing with, namely V = V(qi + q~). 

Moreover, if statement (b) would indeed define an 
equivalence relation, all the Hamiltonians for different cen­
tral potentials would be equivalent, due to the transitive 
property of equiValence relations. 

With this counterexample I have proved that the criter­
ium (b) given in Ref. 1, to decide whether two Hamiltonians 
Hand H are equivalent, is incorrect. 

'0. Espindola, N. L. Teixeira, and M. L. Espindola, "On the generation of 
equivalent Hamiltonians," J. Math. Phys. 27, 151 (1986). 
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Canonical transformations and the equivalence problem 
D. T. Moreiraa) and J.-E. Werth 
Departamento de Ffsica, Universidade Federal da Parafha, 58.000-Joao Pessoa-PB, Brazil 

(Received 21 January 1985; accepted for publication 23 May 1986) 

Several equivalence relations for Hamiltonian systems are studied. The relationship to the 
theory of canonical transformations is analyzed. In the hyperregular case, the results are 
transformed into the Lagrangian formulation. The gauge group of Lagrangian mechanics is 
obtained by looking at the generating functions for canonical fiber invariant transformations. 
An intrinsic proof of a theorem of Henneaux [M. Henneaux, Ann. Phys. (NY) 140,45 
(1982)] is given. 

I. INTRODUCTION 

Consider a dynamical system X on the cotangent bundle 
T *Q over the configuration space Q. We assume that X de­
scribes the dynamics of a mechanical system. Then the clas­
sically observable trajectories in Q are the projections of the 
solution curves of X in T *Q. Any diffeomorphism qJ: 
T *Q~ T *Q will transform any vector field X on T *Q into a 
vector field qJ*X on T*Q (qJ.X is the push-forward of Xby 
qJ). Clearly X and qJ. X are differentiably conjugate, that is, 
they have "similar" phase portraits: qJ is a one-to-one map­
ping carrying oriented orbits of X to oriented orbits of qJ. X. 
The mappings considered in this paper are fiber-invariant 
diffeomorphisms, connecting systems (phase flows) which 
are called equivalent. It is verified easily that the solution 
curves for equivalent dynamical systems coincide when pro­
jected to configuration space. 

Suppose now that X = X H is a Hamiltonian vector field 
on T*Q. Then the above consideration leads to the well­
known fact that the classically observable trajectories of 
some mechanical systems do not uniquely describe their 
Hamiltonian; this may result in inequivalent quantum and 
statistical theories. We observe that this type of ambiguity 
("gauge invariance") occurs in several physical theories. 
We refer, e.g., to classical Maxwell fields on manifolds, and 
to gauge theories on principal fiber bundles. 1 In the case of 
classical electrodynamics, the origin of gauge invariance lies 
in the fact that the potentials A and tP are not unique for given 
physical fields E and B. The transformations which A and tP 
may undergo while preserving E and B (and hence the Max­
well equations) unchanged are called gauge transforma­
tions, and the group of all gauge transformations is called the 
gauge group. 

In the present paper we examine the connection between 
the theory of canonical transformations and the problem of 
gauge invariance (equivalence problem) for conservative 
mechanical systems. For the nonconservative case, we refer, 
e.g., to Ref. 2. Because of the role that the cotangent bundle 
(with its canonical symplectic structure) plays in the theory 
of canonical transformations, it is convenient to start with 
the Hamiltonian point of view (differential geometrically, 
the Hamiltonian involves the cotangent bundle, the Lagran­
gian the tangent bundle). Let.r (T *Q) denote the space of 
all smooth real-valued functions on T*Q. The equivalence 
relation for dynamical systems on T *Q induces an equiv-

aj Pennanent address: Departamento de Matematica, Universidade Esta· 
dual de Londrina, 86.IOO-Londrina-PR, Brazil. 

alence relation on.r (T *Q), called q-equivalence. Of parti­
cular interest are two stronger equivalence relations on 
.r (T*Q): c-equivalence and s-equivalence. Proposition 2 
tells us that c-equivalence classes and s-equivalence classes 
are orbits of certain group actions on.r (T *Q). The group 
classifying c-equivalent Hamiltonians is essentially 
Cani (T *Q), the group of canonical fiber-invariant transfor­
mations on T*Q; the corresponding group for s-equivalence 
is the subgroup SPi (T *Q) C Cani (T *Q) of symplectic fi­
ber-invariant transformations. A similar result in the La­
grangian formulation is given by Proposition 7. The corre­
sponding group is the additive group n! Q of closed 
one-forms on Q. Here n! Q is called gauge group of Lagran­
gian mechanics (see Ref. 3, p. 216) and acts via gauge trans­
formations on.r r (TQ). By Proposition A2, n!Q is isomor­
phic to SPi (T *Q). This is most useful when applied to the 
hyperregular situation. Indeed, the natural one-to-one cor­
respondence X: .rhr(TQ)~.rhr(T*Q) between hyperre­
gular Lagrangian and Hamiltonian functions turns out to be 
equivariant with respect to (extended) gauge transforma­
tions and canonical transformations (Theorem 2). 

II. HAMILTONIAN MECHANICS 

Let Q be a differentiable manifold (configuration space) 
and T *Q its cotangent bundle (the associated phase space). 
Denote by Diff( T *Q) the group of all diffeomorphisms on 
T *Q, and let Diffi (T *Q) denote the subgroup of all fiber­
invariant diffeomorphisms qJ on T*Q (i.e., rZ0qJ = TQ). 
Any qJE Diff( T *Q) will transform any vector field X on T *Q 
into a vector field qJ. X on T*Q (qJ.X is the push-forward of 
Xby qJ). If His any Hamiltonian, i.e., any function on T*Q, 
then X H denotes the associated Hamiltonian vector field on 
T*Q. Now consider a Hamiltonian HE.r (T*Q). Then 
qJE Diff(T*Q) is called H-canonoid if qJ.XH is a Hamil­
tonian vector field, i.e., if there is a H 'E.r (T *Q) such that 
qJ.XH = X

H
,. Any H-canonoid fiber-invariant qJ is called an 

H-fouling transformation.4 

Definition 1: Two Hamiltonians H, H I are called q-equi­
valent if there exists a qJEDiff; (T *Q) such that 
qJ.XH =Xw ' 

This clearly defines an equivalence relation ::... on 

.r (T *Q). Since qJ is fiber-invariant, the (classically observ­
able) base integral curves of X H and X H' on Q coincide: 

x x x , 
TQ0tP,H(aq ) =rZ0qJ0tP,H(aq ) =rZ0tP,H (qJ(a q »). 
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Clearly q; is an H-fouling transformation, and q; -I is an H'­
fouling transformation. 

Wo = - d()o denotes the canonical symplectic structure 
on T*Q. Here q;EDiff(T*Q) is called a canonical transfor­
mation if there is a AlPER - {O} such that g* Wo = AlP wo, if 
AlP = I,q;, is a symplectic transformation. We observe that 
q;EDiff( T *Q) is a canonical transformation if and only if q; is 
H-canonoid for any HEY (T*Q), i.e., iff q; preserves the 
canonical formalism for any Hamiltonian.5 Denote by 
Can ( T*Q) the group of all canonical transformations, with 
subgroup Sp ( T *Q) C Can ( T *Q) of all symplectic transfor­
mations. Finally, consider 

Can; (T*Q) = Can(T*Q)nDiff;(T*Q) 

and its subgroup 

Sp;(T*Q) = Sp(T*Q)nDiff;(T*Q). 

Definition 2: Two Hamiltonians H, H' are called c-equi­
valen t if there exists a q;ECan; ( T * Q) such that 
q;.XH = X H'; if q;ESp; (T*Q), H andH' arecalleds-equiva­
lent. 

The corresponding equivalence relations are denoted by 

..: and ":, respectively. Note that s-equivalence implies c­

equivalence, while c-equivalence implies q-equivalence. By 
Jacobi's theorem, a diffeomorphism q;EDiff( T *Q) is a ca­
nonical transformation if and only if q;. X H = X;',,1l0IP _ I, for 

any HEY (T*Q). Thus we obtain the following. 
Proposition 1: Let H, H' be two Hamiltonians. Then (i) 

Hand H' are c-equivalent if and only if there exist a 
q;ECan; (T *Q) and a cER. such that H' = AIPHoq; - I - c; 
and (ii) Hand H' are s-equivalent if and only if there exist a 
q;ESp; (T *Q) and a cER. such that H' = Hoq; - I_C. 

We now turn to the study of group actions. First consid­
er the semidirect product Can;(T*Q)X;.R, where 
A: Can; (T*Q)-Aut(R) is the group homomorphism giv­
en by (A(q;») (c) =AIPC. The group structure in 
Can; (T *Q) X;. R is the semidirect product structure given 
by 

(q;,c) (q; ',c') = (q;Oq;', c + AIPC') . 

Then Can; (T *Q) X;. R acts on Y (T *Q), the group action 

Pc: (Can;(T*Q) X;.R )xY (T*Q)_Y (T*Q) 

given by 

Pc(q;,c),H) = AIPHoq; - I_C. 

HereSp; (T*Q) X;.R is a subgroup of Can; (T*Q) X;.R; by 
restriction, we obtain the group action 

Ps: (Sp;(T*Q) X;.R )XY (T*Q)-Y (T*Q) , 

p.(q;,c),H)=Hoq;-I_ C. Using these terms, we can 
make the following observation. 

Proposition 2: The orbits of Pc are the c-equivalence 
classes, and the orbits of Ps are the s-equivalence classes. 

To any HEY (T*Q) we associate a map FH: 
T*Q-T**Q by FH(aq )/3q = dH(/3q )~q; here 

(/3q)~q: =!!...I (aq +t/3q)ETaq T*Q 
dt 1=0 

denotes the vertical lift of/3qET:Q with respect toaqET:Q. 
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Define FH: T*Q_TQ by FH = ifJ-IoFH, where ifJ denotes 
the natural bijection TQ~ T**Q. We shall need the follow­
ing result. 

Proposition 3: FH = T~oXH' 
Proof We must show FH = ifJo~oXH' i.e., 

FH(aq )/3q = /3q(T~oXH (aq»), for all a q,{3qET:Q. 

Now 

FH(aq )f3q = dH(/3.q)~ = (ix wo) (f3q)~ 
q H q 

= -d()O(XH(aq),(f3q)~). 

Choose two (local) vector fields TJ and X on T *Q such that 
(i) TJ is vertical and TJ(aq ) = (f3q)~ ; 
(ii) [X,TJ] =OandX(aq) =XH(a;). 

Then (see Ref. 3, p. 117) 

- d()o(XH (aq), (f3q )~q) 

= TJ(aq ) ()o(X) - X(aq )()o( TJ) + ()o(aq )[X,TJ] 

= TJ(aq )()o(X) = :r I 1 = /o(X(ifJi(aq»)) 

= !1,=oifJi(aq)(T~X(ifJi(aq»)). 
Observe that T1"~ . X (ifJi(aq ) )ETqQ since ifJi(aq ) is a verti­
cal flow. We obtain 

FH(aq)/3q =!!...I ifJi(aq)(T~X(aq») 
dt .=0 

+!!...I aq(T~X(ifJi(aq»)) 
dt 1=0 

=/3q(T~X(aq»)' 

This proves the assertion. 
We shall now specialize to the important case when H is 

hyperregular. Here HEY (T*Q) is called hyperregular if 
FHis a diffeomorphism, and Yhr(T*Q)CY (T*Q) de­
notes the set of all hyperregular Hamiltonians. 

Proposition 4: Let HEYhr(T*Q), H'EY (T*Q), and 
suppose that Hand H' are q-equivalent. Then 
H 'EYhr (T*Q), and q;: = (FH') -loFH is the unique fiber­
invariant diffeomorphism such that q;,.. X H = X H' • 

Proof By definition, q;.X H = X H' for a q;EDiff; (T *Q). 

By Proposition 3, FH = T1"~OXH and FH' = T~oXH" 
Consequently, 

FH' = T~oq;. oXH = T~oTq;oXHoq; -I 

= T~oXHoq; -I = FHoq; -I. 

Since H is hyperregular, hyperregularity of H' and 
q; = (FH,)-loFHresult. 

This last result tells us that the group actions Pc andps 
leave Yhr(T*Q)CY(T*Q) invariant, thus inducing 
group actions 

and 

p~r: (Can;(T*Q) X;.R) XYhr(T*Q)-Yhr(T*Q) 

p;r: (Sp;(T*Q) X;.R) xYhr(T*Q)-Yhr(T* Q), 

p~r(q;,c),H) = AIPHoq; - 1 - C , 
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p~r(tp,c),H) = HOtp ~ 1 - c. 

We say that a group actionp: G XM---*Mis effective (resp. 
free) ifp(g,m) = m for all mEA! (resp. for some mEA!) im­
plies that g = e. 

Proposition 5: (i) The group actions Pc andps are effec­
tive, but not free. 

(ii) p~r and p~r act freely on Y hr ( T *Q). 
Proof: It is verified easily that (a) if p~r is free, then p~r is 

free andpc'ps are effective; and (b) ifps is notfree, then Pc is 
not free. 

We first prove that p~r is free. Suppose that 
p~r(tp,c),H) =H for a HEYhr(T*Q). Then 
A'PHotp -I - c = Hand henceX".,Iio'P _I = XH • By Jacobi's 

theorem, tp.XH = X H • SinceH is hyperregular, Proposition 
4 yields tp = idT•Q. Consequently (tp,c) = (idT.Q,O), i.e., 
the identity in Can; (T*Q) X;.R. Thusp~ris free. Finally,ps 
is not free since Ps(tp,c),H) = H for H = 0, c = 0, and tp 
any element in Sp; (T *Q). 

Corollary 1: Assume that H: T*Q---*R is hyperregular. 
Then Hamiltonians c-equivalent to H are in one-to-one cor­
respondence with elements of Can; ( T *Q) X;. R, and Ham­
iltonians s-equivalent to H are in one-to-one correspondence 
with elements ofSp; (T*Q) X;.R. 

It is natural to ask whether one can give a (infinite­
dimensional) manifold structure to Yhr(T*Q) such that 
the free group actions p;r and p~r induce principal fiber bun­
dles with total space Y hr (T *Q) and structure groups 
Can;(T*Q)X;.R and Sp;(T*Q)X"R, respectively. Al­
though there are many formal analogies between our work 
and the' theory of principal fiber bundles, we are not pre­
pared at this time to go into these considerations. 
III. LAGRANGIAN MECHANICS 

Y (TQ) denotes the space of real-valued functions on 
the tangent bundle over Q. Take a Lagrangian L, i.e., any 
LEY (TQ). The analog of FH in the Lagrangian approach 
is the Legendre transformation FL: TQ---*T*Q, 
FL(vq )wq = dL(wq )~q' vq,wqETqQ. Here LEY (TQ) is 
called regular if FL is a local diffeomorphism; if FL is a 
diffeomorphism, we say that L is hyperregular. In the fol­
lowing, Y hr ( TQ) C Y r ( TQ) C Y (TQ) denote the subsets 
of hyperregular Lagrangians and regular Lagrangians, re­
spectively. For LEY r ( TQ), W L denotes the symplectic 
structure (FL)*wo on TQ. Observe that WL = - dBL> with 
BL = (FL)*Bo' Finally, AL denotes the Lagrangian vector 
field (for regular L) on TQ given by iALwL = dEL> where 
ELEY (TQ) is the energy given by EL(vq) 
= FL(vq )vq - L(vq). AL is a second-order equation on 
TQ. Therefore the (observable) base integral curves on Q 
determine AL uniquely. However, the Lagrangian vector 
field does not determine the Lagrangian uniquely. Recall 
that the situation for Hamiltonian systems is as follows: 
there are different Hamiltonians yielding the same base inte­
gral curves, and two Hamiltonians lead to the same Hamil­
tonian vector field if and only if they differ by a constant. 
These are some of the main differences between the Hamilto­
nian and Lagrangian formulations. 

The equivalence problem appears in the Lagrangian 
formulation as follows. 
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Definition 3: Two regular Lagrangians L, L I are called q­
equivalent if AL = AL,; if, furthermore, wL' =AWL for a 
AER - {O}, they are called e-equivalent; if A = 1, they are 
called g-equivalent. 

The corresponding equivalence relations on Y r (TQ) 
q e g 

are denoted by -, - (extended gauge equivalence), and -

(gauge equivalence). Clearly, the g-equivalence relation is 
finer than the e-equivalence relation, and the e-equivalence 
relation is finer than the q-equivalence relation. In the fol­
lowing, D. IQ denotes the space of one-forms on Q, and 
D.!QCD.1Q is the subspace of all closed one-forms on Q. 
<!iven aED.1Q, define aEY (TQ) by a(vq) = a q (Vq) . Let 
R =R - {O}. 

Proposition 6: Suppose LEY (TQ), AER, aED.1Q, cER. 
Then 

(i) F(AL + a + c) = AFL + aOrQ ; 
(ii) (J"L + <i+c =ABL + (rQ)*a; 
(iii) EU +a+c =AEL -c. 

Proof We have 

F(AL + a + c)(vq )Wq 

=d(AL+a+c)(wq)~ =AdL(wq)~ +da(wq)~ 
q q q 

=AFL(vq)wq +aq(wq) = (AFL +aorQ)(vq)wq ; 

thus, (i) follows. Now Bu +a+c = F(AL + a + c)*Bo. By 
(i), we obtain 

Bu +a+c =A(FL)*Bo + (rQ)*a*Bo· 

Since a*Bo = a (see Ref. 3, p. 179), the assertion (ii) fol­
lows. Finally, 

E;'L+a+c(Vq) =F(AL+a+c) (vq)Vq 

-AL(vq) -aq(vq) -c; 

(i) yields Eu + a + c (vq) = AEdvq) - c, as required. 
As a consequence of Proposition 6, we get the following 

two results. 
Corollary 2: Suppose LEY (TQ), AER, aED.!Q, cER. 

Then W"L + a + c = AWL' 
Corollary 3: Suppose AER, aED. IQ, cER. Then 

(i) for LEYr(TQ), AL + a + cEY, (TQ); 
(ii) for LEYhr(TQ), AL + a + cEYhr(TQ). 

We observe that the second part of Corollary 3 corresponds 
to the first part of Proposition 4. The dual to Proposition 1 is 
the following theorem. 

Theorem 1: Let L, L 'EY r (TQ). Then we have the fol­
lowing. 

(i) Land L ' are e-equivalent if and only if there exist 
AER, aED.!Q, cER such that L' = AL + a + c. 

(ii) Land L ' are g-equivalent if and only if there exist 
aED.!Q, cER such that L' = L + a + c. 

Proof It suffices to prove (i). Suppose that 
L' =AL + a + c for a (A,a,c)ER XD.!Q XR. By Proposi­
tion 6, E L' = AE L - c. By Corollary 2, W L' = AWL' It fol-

lows that A
L

, = A L . This proves L:""L'. Conversely, sup­

pose that AL, = AL and wL' =AWL for a AER. Then 
iAL,WL, =dEL" i.e., AiALwL =dEL,. Consequently, 
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A dEL = dEL" i.e.,AEL =EL, +c, foraceR. Moreover, 

dOL' =AdOL,i.e.,OL' -AOLEn~(TQ).SinceAOL -OL' is 
a semibasic one-form on TQ, Proposition Al tells us that 
there is a unique aEn~ Q such that 0 L' - ..1.0 L = ('T Q ) *a. 
Because 'T Q: TQ~Q is a submersion, we obtain 
FL'(vq) -AFL(vq ) =aq,foranyvqETqQ. Thus 

L '(vq ) - AL(vq ) = FL '(vq )vq - AFL(vq )vq - EL' (Vq) 

+AEL(vq ) =aq(vq) +c, 

i.e., L ' = AL + a + c. 
We note that if Land L ' are g-equivalent Lagrangians, 

then locally (ii) corresponds to the usual gauge variance 
L' = L + i(uptoaconstant).Adiscussionofthenonauton­
omous case can be found in Ref. 7. 

We shall now discuss our results in terms of group ac­
tions. Consider the group homomorphism u: 

R~Aut(n~Q XR) given by u(A}(a,c) = (Aa,Ac). The 
group structure in R Xu (n~ Q X R) is the semidirect prod­
uct structure given by (A, a, c) (A', a', c') 
= (..1...1. " a + Aa' ,c + Ac'). Define the group action 

0;: (R Xu(n~Q X R»)XYr(TQ)~Yr(TQ) 

by 0;( (A, a, c),L ) = AL + a + c. Now consider the subset 
Y hr (TQ) c Y r (TQ). By Corollary 3, 0; leaves Y hr (TQ) 
invariant. Arguing as in the Hamiltonian case, we obtain 
group actions 

and 

0;: (n~Q XR) xY,(TQ)~Y,(TQ), 

o;(a, c),L) =L +a +c, 

oZ': (R Xu(n~Q XR»)XYh,(TQ)~Yh,(TQ), 

oZr: (n~Q XR) XYh,(TQ)~Yh,(TQ) . 

The analog of Proposition 2 is the following result. 
Proposition 7: (i) The orbits of 0; are the e-equivalence 

classes in Y r ( TQ) . 
(ii) The orbits of 0; are the g-equivalence classes in 

Y,(TQ). 
The proof of Proposition 7 is a direct consequence of 

Theorem 1. Next we prove a result similar to Proposition 5. 
Proposition 8: The group actions 0;, 0;, o~r, and o~r are 

free. 
Proof It suffices to show that 0; acts freely on Y r (TQ). 

Suppose that 0; «A, a, c),L) = L, for a LEYr(TQ). Then 
(I - A)L = a + c. It is verified easily that F(a + c) (Vq) 
= a q, for vqETqQ. Consequently, (I - A)L is not regular, 

but then A = I since L is regular. It follows that a = 0, c = 0, 
i.e., (A, a, c) = (1,0,0) is the identity in R Xu (n~Q XR). 

Corollary 4: Assume that L: TQ~R is regular. Then 
(A, a, c)~AL + a + c is a one-to-one correspondence 
between R X n~ Q X R and the e-equivalence class contain­
ing L; similarly, (a,c)~L + a + c is a bijection between 
n~ Q X R and the g-equivalence class containing L. 

IV. THE HYPERREGULAR CASE 

We shall now discuss the relationship between the re­
sults obtained in Sec. II and Sec. III. Consider the bijection 
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x: Yhr(TQ)~Yhr(T*Q) given by X(L) = EL o(FL)-I. 
One knows3 that for H = X(L), (FL) -I = PH. Moreover, 
(FL).AL = X H , and, conversely, (PH).XH = A L. The 
next result shows that X is compatible with the equivalence 
relations introduced on Y hr (TQ) and Y hr (T*Q). 

Proposition 9: Let L, L 'EYhr(TQ), and write 
X(L) =H,X(L') =H'. Then 

(i) L;"'L' if and only if H ;"'H'; 

e c 
(ii) L-L' if and only if H -H'; 

and 

(iii) L:"'L ' if and only if H ~H'. 

Proof By Proposition 4, H;"'H' iff q;.XH =Xw for 

q;= (FH,)-loFH. Thus H;"'H' iff (PH).XH 

= (FH').XH" i.e., AL = A L,. This proves (i). But since 
(FH-1)*OJO=OJL we also get (ii) and (iii). 

There is a natural group isomorphism 
¢: n~Q~Sp;(T*Q) given by (¢(a») (/3q): =f3q +aq, for 
aEn~Q, f3qET:Q (P!oposition A2). We also write 
¢(a) = q;a' For AeR, define T;.: T*Q~T*Q by 
T;. (f3q): = Af3q (scaling transformation). A straightfor­
ward calculation shows that 

7!e: R Xu (n~Q XR)~Can; (T* Q) X;.R 

given by 7!e (A, a, c): = (q;a oT;., c) is a group isomor­
phism with inverse 7!e- I (q;,c) = (A,/" ¢-I(q;oT;.-: I),C). 

Theorem 2: The diagram 
{jh' 

(R Xu(n~Q XR»)XYhr(TQ)--: Yhr(TQ) 

~+ ! X 
(Can; (T*Q) X;.R )XYhr(T*Q)~Yhr(T*Q) 

p~r 

commutes. 
Proof By Proposition 6, 

X(AL + a + c) = (AEL - c)o(AFL + aO'TQ)-1 

=AEL O(q;aoT;. oFL)-1 - C 

= AX(L)oT;: loq; a- 1_ c. 

Since A'/'aoT;. =..1., we obtain XooZr=p~ro(7!eXX). This 
proves the assertion. 

Thus the results obtained in Sec. II and Sec. III are equi­
valent in the hyperregular case, and are transformed one into 
the other by the Legendre transformation. 

V. CLOSING REMARKS 

In this paper we discussed the ambiguities in the choice 
of the Hamiltonian (or Lagrangian) of a conservative me­
chanical system. Apart from the rather obvious applications 
in classical and quantum mechanics our results may be of 
interest to mathematicians in the area of "differentiable dy­
namics" in connection with the so-called "equivalence prob­
lem" (see e.g., Ref. 6, p. 141). 

There are weII-known examples of q-equivalent Hamil-

D. T. Moreira and J. -E. Werth 2493 



                                                                                                                                    

tonians which are not c-equivalent (e.g., H = PI P2 for the 
two-dimensional free particle). This motivates the introduc­
tion of weaker concepts of equivalence (including the aspect 
of symmetry). By an interesting result of Henneaux,7 how­
ever, such examples are "exceptional," i.e., "in general" His 
unique up to c-equivalence. 

We finally observe that the above treatment can be ex­
tended in various directions, such as, e.g., nonautonomous 
systems and systems with generalized forces. 
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APPENDIX: A CHARACTERIZATION OF FIBER­
INVARIANT SYMPLECTIC TRANSFORMATIONS 

OEnl(TQ) is called semibasic if O(Sv) =0, for any 
• sv ETv TQ with TrQSv = O. • • • Proposition AI: For any closed semibasic one-formp on 

TQ there exists a unique closed one-form a on Q such that 
P = (r Q) *a. Moreover, if P is exact, then a is exact, too. 

Proof First suppose that P is exact, i.e., P = dF for a 
FEY (TQ). Since P is semibasic, F is constant on the fibers. 
Hence F = gOr Q for a gEY Q. It follows that P = (r Q ) *a 
for a = dg. Since 'T Q is a submersion, a is unique. Now sup­
pose that P is closed. Let {U;.} ;'EA be a covering of Q by open 
contractible sets such that TU;. ~ U;. xR n. By Poincare's 
lemma, P I TU;. is exact for any ..tEA. It follows that there is a 
unique a;. En! U;. such that ('T Q ) *a;. = P I TU;.. Define 
aEn! Q by a I U;. = a;.. Clearly P = ('T Q ) *a, which proves 
the assertion. 
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Observe that the analog of Proposition Al on the cotan­
gent bundle is true and can be proven in the same way. Given 
aEn!Q, define CPa: T*Q-+T*Q by CPa (Pq ) =Pq +aq (fi­
berwise translation by a). It is well known (see Ref. 3, p. 
186) that CPa is a symplectic transformation. Thus we have 
an injective group homomorphism ¢: n!Q-+Sp;(T*Q), 
¢(a)=CPa' 

Proposition A2: ¢ is surjective. 
Proof For CPESp; (T *Q), consider cP *00 

- OoEn I (T*Q). It is verified easily that cP *00 - 00 is closed 
and semibasic. According to Proposition AI, there exists a 
unique aEll!Q such that cP *00 - 00 = ('TQ )*a. Conse­
quently, (cp *00 ) (SP.) = 0o(Sp) + (( 'T Q) *a)(sp.) for any 
SP ET*TQ. Since cP is fiber invariant, we obtain 

• cp(Pq ) =Pq + a q , i.e., ¢(a) = cpo 

We observe that locally, when a = df, then 

cP : 00 - 00 = d ( fO'T Q) ; 

thusfis ageneratingfunction for the canonical transforma­

tion CPa' 
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Dirac's theory of constraints in field theory and the canonical form of 
Hamiltonian differential operators 

Peter J. Olver 
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 

(Received 15 April 1986; accepted for publication 23 May 1986) 

A simple algorithm for constructing the canonical form of Hamiltonian systems of evolution 
equations with constant coefficient Hamiltonian differential operators is given. The result of the 
construction is equivalent to the canonical system derived using Dirac's theory of constraints 
from the corresponding degenerate Lagrangian. 

I. INTRODUCTION 

In the classical theory of Hamiltonian systems, great 
emphasis is placed on the introduction of canonical coordi­
nates-the positions and conjugate momenta of classical 
mechanics. I Canonical coordinates serve to simplify many 
of the equations and transformations required in the study of 
finite-dimensional Hamiltonian systems. Most quantization 
procedures require that the Hamiltonian system be in ca­
nonical form before proceeding. Hamiltonian perturbation 
theories are much easier to develop in canonical coordi­
nates.2•

3 However, in recent years there has been a renewed 
interest in Hamiltonian systems in noncanonical coordi­
nates. The principle motivation has been the development of 
an infinite-dimensional theory of Hamiltonian systems of 
evolution equations in which the role of the skew-symmetric 
symplectic matrix J is played by a skew-adjoint Hamiltonian 
differential operator, and the Hamiltonian function is re­
placed by a Hamiltonian functional. 4,5 Applications to sta­
bility questions in fluid mechanics and plasma physics6 and 
also to completely integrable (soliton) equations7

,8 have 
been just a few of the important consequences of this general 
theory. A significant open problem in this theory is the Dar­
boux problem of whether one can always determine suitable 
canonical coordinates for such a Hamiltonian system. In this 
paper, a general result of this type for constant coefficient 
Hamiltonian differential operators is proved, along with 
some extensions of the result to more general field-depen­
dent Hamiltonian operators. 

In the case of finite-dimensional Hamiltonian systems, 
Darboux' theorem guarantees that canonical coordinates 
can always be found, provided that the Poisson bracket has 
constant rank.9 For maximal rank (symplectic) Poisson 
brackets, the proof of Weinstein 10 is especially appealing in 
that it readily extends to certain infinite-dimensional situa­
tions. There are two main steps in Weinstein's proof: first the 
Hamiltonian operator is reduced to a constant operator by a 
clever change of variables; second, one shows that any con­
stant-coefficient skew-adjoint operator can be placed into 
canonical form. In this light, the present paper can be viewed 
as an implementation of the second part of Weinstein's proof 
in the case of constant-coefficient skew-adjoint differential 
operators. The first part of the proof is far more difficult, 
and, unfortunately, the infinite-dimensional version of Dar­
boux' theorem due to Weinstein does not appear to be appli­
cable to the Hamiltonian differential operators of interest. 

The problem is that Weinstein requires some form of Banach 
manifold structure to effect his proof, but for differential 
operators that depend on the dependent variables it is not at 
all obvious how to impose such a structure. Even if one could 
mimic Weinstein's proof, the resulting changes of variable 
would be horribly nonlocal, and therefore be of limited use. 
Thus the question of whether Darboux' theorem is valid for 
Hamiltonian differential operators remains an important 
open problem. Only in special cases, including first- and 
third-order scalar operators, and some first-order matrix op­
erators is the answer known. II

,26 (Results of Dubrovin and 
Novikov l2 indicate that Darboux' theorem may not hold for 
matrix operators involving more than one independent vari­
able, but they only consider a limited class of changes of 
variable, so the general Darboux problem remains unan­
swered.) 

The underlying motivation of this paper can be found in 
the recent applications of Dirac's theory of constraints by 
Nutku to produce canonical forms of a number of Hamilto­
nian systems of evolution equations of physical interest, in­
cluding the equations of shallow water waves and gas dy­
namics13 and the Korteweg-de Vries equation. 14 In the 
finite-dimensional theory of the calculus of variations, for 
nondegenerate Lagrangians the passage from the Euler-La­
grange equations to the corresponding canonical form of 
Hamilton's equations is classical. I Dirac's theory of con­
straints was designed to handle degenerate Lagrangians and 
produce canonical Hamiltonian systems, which, when sub­
jected to the appropriate constraints, reduce to the original 
Euler-Lagrange equations. 15 In Nutku's applications of this 
theory, one begins with a Hamiltonian system of evolution 
equations, whose Poisson bracket is not in canonical form. 
The next step is to replace the original Hamiltonian system 
of evolution equations by an equivalent system of Euler­
Lagrange equations; this appears to require that the Hamil­
tonian operator be constant coefficient. The resulting La­
grangian function is inevitably degenerate, so to construct a 
corresponding canonical Hamiltonian system one is re­
quired to invoke the Dirac machinery. The details of the 
construction can be found in Refs. 13 and 14. 

However, given the fact that one begins with a (nonca­
nonical) Hamiltonian system, the entire procedure seems to 
be a bit roundabout, and it would be useful to have a direct 
method of constructing canonical Hamiltonian systems 
from more general Hamiltonian evolution equations. In this 
paper a simple constructive procedure for effecting this 
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transformation to canonical coordinates is presented. The 
only restriction is that the original Hamiltonian differential 
operator does not depend on the field variables or their de­
rivatives; typically the operator will be a constant-coeffi­
cient, skew-adjoint differential operator, but explicit depen­
dence on the spatial variables is also allowed. The method is 
illustrated with a number of examples, including elementary 
derivations of Nutku's Hamiltonians for gas dynamics and 
the Korteweg-de Vries equation. More general Hamiltonian 
operators are less easy to deal with directly. At present, the 
only recourse is to first determine a transformation that will 
place the operator in constant-coefficient form, and then ap­
ply the method described here. 

II. HAMILTONIAN OPERATORS 

For the basic theory of Hamiltonian systems of evolu­
tion equations, we refer the reader to the works of Gel'fand 
and Dorfman,4 and the author. 5,16 We let x = (XI,oo.,Xp ) de­
note the spatial variables, and u = (u I, ... ,uq 

) the field vari­
ables (dependent variables), so each ua is a function of 
x\oo.,xP and the time t. We will be concerned with autono­
mous systems of evolution equations 

u,=K(u], 

in which K(u] = (KI (u ],oo.,Kq (u]) is a q-tuple of dWeren­
rial junctions, where the square brackets indicate that each 
Ka is a function of x, u, and finitely many partial derivatives 
of each ua with respect to XI,oo.,Xp. A system of evolution 
equations is said to be Hamiltonian if it can be written in the 
form 

(1) 

HereJ>1"(u] = fH(u] dx is the Hamiltonian functional, and 
the Hamiltonian function H(u] depends on x, u, and the 
derivatives of the u's with respect to the x's; 
Eu = (EI,.oo,Eq) denotes the Euler operator or variational 
derivative with respect to u. The Hamiltonian operator ~ is 
a qxq matrix differential operator, which may depend on 
both x, u, and derivatives of u (but not on t), and is required 
to be (formally) skew-adjoint relative to theL 2-inner prod­
uct (J,g) = ffg dx = f~ja.~ dx, so 

~*= -~, 

where * denotes the formal L 2 adjoint of a differential opera­
tor. 16 In addition, ~ must satisfy a nonlinear "Jacobi condi­
tion" that the corresponding Poisson bracket 

{&',22} = J Eu (P)·~Eu (Q) dx, 

&' = J P (u] dx, 22 = J Q [u] dx, 

satisfies the Jacobi identity.4,5.16 In the special case that ~ is 
a field-independent skew-adjoint differential operator, 
meaning that the coefficients of ~ do not depend on u or its 
derivatives (but may dependonx), the Jacobi conditions are 
automatically satisfied; for more general field-dependent op­
erators, there is a nontrivial computation to be effected to 
determine whether or not it is genuinely Hamiltonian. 

Since we will be using changes of variables, it is essential 
that we determine how they affect objects like Euler opera-
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tors and Hamiltonian operators. The changes of variables to 
be considered here are of the form u = Q [ v], where 
Q[v] = (QI (v ],oo.,Qq [v]) is a q-tuple of differential func­
tions, depending on the variables x, v = (vI,oo.,vq ) and de­
rivatives of v with respect to x. Let DQ denote the Frechet 
derivative of Q with repect to v, which is the qxq matrix 
differential operator defined by the formula 

DQ(W)=~I Q[v+€w], w=(wI,oo.,wq). 
d€ E=O 

Alternatively, note that if u = Q [v], then 

u, =DQ [v,] . (2) 

Let D 0 denote the (formal) L 2 adjoint of D Q • 

Proposition 1: Let u = Q[v] be a change of variables. 
Then the variational derivatives with respect to u and v are 
related by the formula 

Ev =DO·Eu . (3) 

Proposition2:Letu, = ~.Eu (H) be a Hamiltonian sys­
tem with Hamiltonian operator ~. Let u = Q[v] be a 
change of variables. Then the corresponding Hamiltonian 
operator g; in the v variables is related to that in the u vari­
ables by the formula 

DQ.g;.D o = ~ . (4) 

The corresponding Hamiltonian system in the v variables is 

v, = g;.Ev(H), 

in which we take the variational derivative of H with respect 
to v. 

These results are special cases of an even more general 
theorem on how Euler operators and Hamiltonian operators 
behave under changes in both the independent and depen­
dent variables. 1l,I7 Note that (4) follows easily from (2) and 
(3) . 

Example 3: Suppose u (x,t) is scalar valued, xElR, and let 
ep(x,t) be a potential function for u, so the change of vari­
ables is 

u = Q [ep ] = epx . 

The corresponding Frechet derivative is easily seen to be 
DQ = Dx, with adjoint D 0 = - Dx. Therefore, by (3), 

E<p (H) = - DxEu (H) , (5) 

for any differential function H. 
Similarly, if ~ is any Hamiltonian operator in the u 

variables, then the corresponding Hamiltonian operator in 
the v variables g; is related by the formula 

Dx·g;·( -Dx) = ~. 

For example, consider the Harry Dym equation7 

u,=D!(U- t/2 ), (6) 

which is in Hamiltonian form ( 1) with Hamiltonian opera­
tor 

~=D~ , 
and Hamiltonian function 

H= 2{ii. 

Ifwe introduce a potential function epx = u, then the corre­
sponding potential form of (6) is the equation 
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(7) 

(Here, and elsewhere, we set the integration constants to 0 
when introducing a potential function.) The Hamiltonian 
for (7) isjust 

H=H=2{rj;, 

and the Hamiltonian operator is g = - D x' since D! 
= D x • ( - D x H - D x ). Indeed, (7) is the same as the evo­

lution equation 

({Jt = g .E", (H) , 

as the reader can check. 

III. THE GARDNER HAMILTONIAN OPERATOR 

In order to simply illustrate the main ideas of the paper, 
we begin by discussing the elementary Hamiltonian operator 
!!fl = Dx, originally found by Gardner in connection with 
the Korteweg-de Vries equation. 18 Thus we are looking at a 
single evolution equation of the form 

Ut = Dx·Eu (H) , (8) 

in which 7zP = S H[ u] dx is the corresponding Hamiltonian 
functional. We first show that any such Hamiltonian system 
can always be derived from a Lagrangian variational prob­
lem. 19 

Proposition 4: Let Ut = Dx .Eu (H) be a Hamiltonian 
evolution equation relative to the Hamiltonian operator Dx. 
Let ((J(x,t) be the potential of u(x,t), so ({Jx = u. Then the 
Hamiltonian evolution equation is equivalent to the Euler­
Lagrange equation for the variational problem 
!f = S L [({J] dx with Lagrangian 

L [({J] = ({Jx({Jt - 2H [({Jx] . (9) 

Proof: Formula (5) immediately implies that the Euler­
Lagrange equation for !f is 

E",(L) = -2rpxt -2E",(H) = -2{ut -DxEu(H)} =0, 

which coincides with a multiple of the original Hamiltonian 
system (8). 

We now apply Dirac's theory of constraints to the La­
grangian (9) as explained in Nutku. 13,14 The Lagrangian is 
degenerate, and the first constraint should be determined by 

aL 
C1 = 1T - -- = 1T - ({Jx = 1T - U = 0 , 

a({Jt 

in which 1T will be the canonical momentum dual to ({J. As 
shown by Nutku, this constraint is second class in the ter­
minology of Dirac, and so to derive the further constraints 
we need to investigate the canonical Poisson brackets of the 
constraint with the Hamiltonian. 

In the version of the Dirac theory used by Nutku, the 
Lagrangian is required to only depend on first-order deriva­
tives of the potential ({J. This is equivalent to the fact that the 
Hamiltonian H = H(x,u) depends only on x and u, and not 
any derivatives of u, so that the Hamiltonian system (8) is a 
simple nonlinear wave equation 

ut = [Hu (x,u)]x = Hxu (x,u) + Huu (x,u),ux . 

The corresponding potential form is the equation 

({Jt = Hu (x,({Jx) . 
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The Lagrangian (9) for this equation is 

L = ({Jx({Jt - 2H(x,({Jx) . 

Therefore, provided there are no further constraints coming 
from the Poisson brackets of the constraint with the Hamil­
tonian, the total Hamiltonian has the form 

H * = 2H(x,({Jx) + A( 1T - ({Jx) , 

where the multiplier A. remains to be determined. [In the 
notation of Ref. 13, the free part of the Hamiltonian has been 
determined as 

Ho = ({Jt 1T - L = ({Jt 1T - ({Jx({Jt + 2H(x,({Jx) = 2H(x,({Jx ).] 

Using the canonical Poisson bracket relations l4 

{({J(X),1T(X')} = 8(x - x') , 

8 being the Dirac delta function, we find 

{cl(X),C1(x')} = - 28'(x -x'). 

Therefore 

{c1 (x),H *(x')} = 2 [Hu (x',({Jx (x'») - A. ] ·8'(x - x') , 

from which we see that A. = Hu (x,({Jx) is required in order to 
make the Poisson bracket vanish. Thus the total Hamilto­
nian is 

H * [({J,1T] = 1T.Hu (x,({Jx) + 2H(x,({Jx) - Hu (x,({Jx ) '({Jx . 
( 10) 

The canonical equations corresponding to H *, which are 

({Jt = E1r [H *] = Hu (x,({Jx ) , 

1Tt = - E", [H*] 

= Dx {( 1T - ({Jx )Huu (x,({Jx ) + Hu (x,({Jx)} , 

are easily seen to reduce to the original wave equation when 
subjected to the constraint 1T = u. 

The goal now is to generalize this construction to Ham­
iltonian functions which depend on higher-order derivatives 
of the field variable u. Rather than try to follow through the 
complete derivation using the Dirac theory, as in Ref. 14, we 
proceed directly to the general result. In order to state it, we 
need to introduce the multiplication operator 

a a a 
N=u-+ux --+uxx --+''', 

au aux auxx 

whose action on differential functions is to multiply each 
term by its algebraic degree in u and its derivatives. For 
example, 

N(uxx + xu2ux + us) = Uxx + 3xu2ux + Sus. 

Theorem 5: Let U t = Dx .Eu (H) be a Hamiltonian sys­
tem with Hamiltonian operator D x • Then the corresponding 
canonical Hamiltonian system has total Hamiltonian 

H*[1T,({J] = 1T.Eu (H) + (2 - N)H, (11) 

in which ({J is the potential for u, 1T the corresponding mo­
mentum, and u is to be replaced by ({Jx on the right-hand side 
of ( 11 ). The corresponding canonical Hamiltonian system 
for H * takes the form 

((Jt=E1r (H*), 1Tt = -E",(H*) , (12) 

and, when subjected to the constraint 1T = U = ({Jx, is equiva­
lent to the original Hamiltonian system. 
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For example, in the case that B = B(x,u) just depends 
on u, then (11) reduces to the formula (10) derived using 
the Dirac theory. 

Proof: It suffices to check that when 1T = u, the pair of 
evolution equations in (12) reduce to the original evolution 
equation (8). The first one is easy, sinceE". (B*) = Eu (B), 
and so wejust derive the potential form ~t = Eu (B) of the 
original equation. For the second, we require a lemma of 
Olver and Shakiban.20 

Lemma 6: Let u (x) be real valued, and let L [u] be any 
differential function. Then 

(13) 

[Indeed, if P is a differential polynomial, then the condition 
Eu (u·P) = (N + I)P is both necessary and sufficient that 
P = Eu (L) be the Euler-Lagrange expression for some La­
grangian L. ] 

Corollary 7: Let u(x) and 1T(X) be real-valued func­
tions, and L [u] any differential function depending only on 
u and its derivatives. Then 

Eu(1T·Eu(L»)I".=u =N[Eu(L)] =Eu«N-l)L). 
(14) 

Proof: The second equality is clear since the Euler opera­
tor Eu reduces the algebraic degree of a differential function 
by 1. To prove the first, we use the well-known formula for 
the Euler operator 

00 a 
Eu = L (-Dx)n._, 

n = 0 aUn 

where Un = an u/axn. Therefore 

{ 
aEu (L)} 

Eu(u·Eu (L») = Eu (L) + ~ ( - Dx)n U· aU
n 

. 

On the other hand, since the restriction to 1T = U commutes 
with the operation of total differentiation Dx (but not with 
the partial derivatives a faun ), the left-hand side of (14) 
equals 

The equivalence of (14) and (13) is now clear. 
Returning to the proof of the theorem, we only need 

compute 

E",(B*) =E",{1T.Eu(B) + (2-N)B} 

= - Dx .Eu {1T.Eu (B) + (2 - N)H}' 

cf. (5), and restrict to 1T = u. According to ( 14), this equals 

E", (B*) I".=u = - Dx·Eu {(N - I)B + (2 - N)B} 

= - Dx·Eu (B) , 

which explains the factor (2 - N) in the formula (11) for 
the total Hamiltonian. Therefore, when restricted to the con­
straint 1T = u, the second evolution equation in (12) be­
comes 

Ut = -E",(H*)I".=u = Dx·Eu (B) , 
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which is the same as the original Hamiltonian system! This 
completes the proof. 

Example 8: Consider the evolution equation 

(15) 

which is a combination of the Korteweg-de Vries and modi­
fied Korteweg-de Vries equations. This is in Hamiltonian 
form (8), with Hamiltonian 

B = 1 u2 _ lu2 + 1 u3 + 1 u4 
2 2 x li n' 

Note that 

Eu (B) = u + U xx + ~ u2 + j u3 
, 

while 

(N - 2)B = i u3 + i u4 
• 

Therefore the total Hamiltonian (11) is 

B* = 1T(U + Uxx + ~ u2 + j u3
) - i u3 

- i u4 

= 1T( ~x + ~xxx + !~; + j~! ) - i~! - t~! . 
The corresponding canonical Hamiltonian system is 

~t =E".(H*) =~x +~xxx +!~; +j~!, 

1Tt = -E",(H*) =1Tx +1Txxx +1Tx~x +1T~xx (16) 

+ 1Tx~; + 21T~x~xx - ~x~xx - ~ ;~xx . 

The first is just the potential form of the original equation 
( 15 ); restricting to 1T = ~ x = u, the second reduces to (15) 
identically. Thus we are justified in labeling (16) as the ca­
nonical form of the modified Korteweg-de Vries equation 
( 15). If the last term in ( 15) does not appear, we are back to 
the Korteweg-de Vries equation as treated by Nutku. 14 

IV. CANONICAL FORMS AND FACTORIZATIONS OF 
HAMILTONIAN OPERATORS 

Theorem 5 readily generalizes to systems of evolution 
equations which are in field-independent Hamiltonian form 

u, = ~.E(H) , (17) 

in which the Hamiltonian H depends on x = (x1, ... ,xP), 
u = (u1, ... ,uq

), and the derivatives of the u's with respect to 
the x's. The corresponding Lagrangian form of such a sys­
tem is written in terms of the "potential" ¢ = (¢l, ... ,~), 
satisfying ~ ¢ = u. The Lagrangian function is 

L [¢] = (~¢).¢, - 2H, 

in which ~ ¢ is to be substituted for u in B. Using the change 
of variables formula (3), which is 

E", (H) = ~*.Eu (H) = - ~ ·Eu (B) 

(the second equality following from the skew-adjointness of 
~ ), we easily check that the Euler-Lagrange equations 
E", (L) = 0 for L are the same as the Hamiltonian system 
(17). 

As it turns out, for each possiblejactorzZation, 

~=~1'~2' (18) 

of the differential operator ~ into the product of two differ­
ential operators ~ 1 and ~ 2' there is a corresponding ca­
nonical Hamiltonian system that reduces to (17). Either ~ 1 

or ~ 2 can be the identity operator, in which case the other 
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one coincides with ~ , but this is not the only possible choice 
in (18). Once a factorization has been chosen, we define 
canonically conjugate "positions" rp = (rp I, ... ,rpq) and mo­
menta 1T = (1TI , ... , ~ ) by the equations 

~ Irp = U, ~!1T = U , 

where ~! is the adjoint of g 2' Thus, the choice of g I and 
g 2 might be determined on physical grounds as to which 
variables might reasonably be labeled "position" or "mo­
mentum"; however, from a mathematical point of view, any 
choice of ~ I and ~ 2 satisfying (18) is allowable. 

We also need the general mUltiplication operator 
a anua 

N = L u~ --, u~ =. ., 
au~ ax" .. , ax'· 

the sum being over all a = 1, ... ,q and all multi-indices 
J = (jl, ... ,jn ), n;;;.O, 1 <,jv <p, corresponding to all possible 
derivatives of the u's. The effect of Nis, as before, to multiply 
a monomial by its algebraic degree in the u's and their de­
rivatives. With this definition, Lemma 6 has an immediate 
generalization due to Shakiban.21 In this case, formula (13) 

still holds, with u.Eu (H)=~ua .Ea (H). 
Theorem 9: Consider a Hamiltonian system of evolution 

equations Ut = g·E(H), in which the Hamiltonian opera­
tor ~ is a skew-adjoint q X q matrix differential operator, 
whose coefficients do not depend on u or their derivatives. 
Let ~ = ~ I'~ 2 be any factorization of ~ as a product of 
two differential operators. Define canonically conjugate 
variables rp and 1T by the equations ~ Irp = U, g!1T = u. De­
fine the total Hamiltonian 

H*[rp,1T] = (P})!1T).Eu(H) + (2-N)H, (19) 

in which one substitutes ~ Irp for u wherever it occurs on the 
right-hand side of (19). Then the original Hamiltonian sys­
tem is equivalent to the canonical Hamiltonian system 

rpt =Err(H*), 1Tt = -E'I'(H*), 

when subjected to the constraints 

P}) Irp = U = ~!1T. 

(20) 

(21) 

Proof: The first canonical equation is easy; we find it has 
the form 

rpt = Err (H *) = g 2Eu (H) , 

evaluated at u = g Irp. Applying the operator ~ I to both 
sides of this equation, we recover the original Hamiltonian 
system since ~ = ~ I'P}) 2' For the second canonical sys­
tem, we require the identity 

Eu {(~!1T).Eu (H) }Iu = .'P!rr = Eu [(N - 1)H] , 

which follows from formula (13) (in the general case) just 
as ( 14) did before. Therefore, evaluating the canonical equa­
tion 

1Tt = - E", (H*) = - E'I' {(~!1T).Eu (H) + (2 - N)H} 

on the constraint u = g !1T, we find, using (3), 

1Tt = - gr·Eu [(N -l)H + (2 -N)H] 

- gr·Eu(H). 

Finally applying g! to this system, we recover 

Ut =~!·gr·Eu(H) = -g*.Eu(H) =g.Eu(H), 
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since ~ is skew-adjoint. Thus the second canonical equa­
tion, when evaluated on the constraints, is equivalent to the 
original Hamiltonian system, and Theorem 9 is proven. 

Example J 0: Consider the equations of gas dynamics for 
a polytropic gas 

Ut +uux +vr- 2vx =0, 

Vt + uVx + vUx = 0 , 

the case r = 2 also covering the equations of shallow water 
wave motion. J3 These are in Hamiltonian form 

(U) (Eu (H») 
v t = ~ Ev(H) 

=(;x D;)(_!U2_(;~V1)-lvr_I)' 
with Hamiltonian function 

H[u,v] = -!u2v-{r(r-l)}-lvr. 

Let rpx = u, f/!x = v be the corresponding potentials, with 
1T = v,p = u, the canonically conjugate momenta. The read­
er can see that this corresponds to the factorization (18) in 
which g I =Dx, and g2 = (? b). Note that 

(2 - N)H = 1. u2v + r - 2 vr. 
2 r(r-1) 

Therefore, according to (19), the corresponding canonical 
total Hamiltonian is 

H*[rp,f/!,1T,p] = - {J.. u2 + 1 Vr- I }1T - uvp 
2 (r - 1) 

1 2 r- 2 +-u v+ vr 
2 r(r - 1) 

{
I 2 1 .I.r - I} .1. 

=- Trpx+(r_1)'f'X 1T-rpx'f'xP 

1 2 r- 2 r 
+ Trpxf/!x + r(r-l) f/!x· 

This is the same as that derived by Nutku,13 but the deriva­
tion here is far more straightforward. The Hamiltonian sys­
tem 

u, =Err(H*), Vt =Ep(H*), 

1Tt = -Eu(H*), p,= -Ev(H*), 

when SUbjected to the constraints 

rpx =p=u, f/!x =1T=V, 

is easily seen to be equivalent to the original system. 
There are, of course, other possible factorizations of the 

Hamiltonian operator g, and these lead to different canoni­
cal total Hamiltonians. For example, if we choose g I to be 
the identity operator, while g 2 = ~, then the velocities u,v 
are the canonical "positions," while the conjugate momenta 
1T,p are related by 1Tx = - v, Px = - u. In this case for­
mula (19) gives the total Hamiltonian as 

H*[rp,f/!,1T,p] = - UV1T _ {J.. u2 + 1 vr-I}p 
2 (r-l) 

1 2 r- 2 +-u v+ vr , 
2 r(r-l) 
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and the gas dynamic equations are equivalent to the canoni­
cal system 

UI =E1r CH*), VI =EpCH*), 

1TI = - Eu CH*), PI = - Ev CH*) , 

when subject to the constraints 1Tx = - v, Px = - u, as 
can be easily checked. 

This last remark indicates that there are other possible 
canonical formulations of the Korteweg-de Vries example 
C 15) above. The procedure of example 8 amounts to choos­
ing the factorization (18) with ~ 2 the identity operator. If, 
on the other hand, we were to choose ~ 1 to be the identity, 
then we would have canonically conjugate variables u and 1T, 
with 1Tx = - u, and total Hamiltonian 

H * = 1T (u + u xx + ~ u2 + j u3
) - ~ u3 

- ~ u4 
• 

While simpler than the Hamiltonian found above, this is not 
the version prescribed by the Dirac theory. It is, however, 
related to the Dirac Hamiltonian by a canonical transforma­
tion. 

Example 11: For a higher-order example, consider the 
Harry Dym equation 

u
l 
=D~(U-1/2), (22) 

which is in Hamiltonian form (17) with 

~ = D ~, H = 2fo . 
If we choose ~I=D;, ~2=Dx' so that f{Jxx=u, 
1T x = - u are conjugate variables, then the total Hamilto-
nian is 

H * = - 1Txf{J x~ 1/2 + 3f{J ~2 , 

with the canonical system (20) equivalent to the Harry Dym 
equation when subjected to the constraints f{Jxx = U, 

1Tx = - u. 
Alternatively, we can choose ~ 1 to be the identity, so U 

and 1T are conjugate, where 1T xxx = - u, in which case 

is the total Hamiltonian. Other factorizations are also possi­
ble. 

V. FIELD-DEPENDENT HAMILTONIAN OPERATORS 

If the Hamiltonian operator depends explicitly on the 
dependent variables u, or their derivatives, then the above 
theory does not appear to be directly applicable. Indeed, a 
significant outstanding problem in the subject is whether 
some version of Darboux' theorem is true for all Hamilto­
nian differential operators, i.e., given a Hamiltonian differ­
entialoperator, is it always possible to find canonical coordi­
nates? The only case that has been completely answered to 
date is the case of first-order scalar differential operators in 
one independent variable. 11 In this case, provided one ad­
mits differential substitutions,22 which change both the inde­
pendent and dependent variables in the problem, one can 
always reduce such an operator to constant coefficient form, 
and hence, using the methods of this paper, to canonical 
form. The proof, however, is constructive, and does not ap­
pear to easily generalize to either higher-order or matrix op-
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erators, so the general "Darboux problem" for differential 
operators remains open. See, also, Ref. 26. 

If one can reduce a Hamiltonian operator to constant 
coefficient form using some change of variables, then the 
methods discussed above are applicable, and canonical co­
ordinates can always be found. In the case ofbi-Hamiltonian 
systems,4.7 or even multi-Hamiltonian systems,23.24 this 
opens up the possibility of several different systems of ca­
nonical variables, which are not related to each other by ca­
nonical transformations. The implications of this phenome­
non for quantization theory or perturbation theory remain 
to be developed. Here we just present a few examples to illus­
trate the main ideas. 

Example 12: The Harry Dym equation (22) has a sec­
ond Hamiltonian structure,7 with first-order Hamiltonian 
operator 

fii = 2uDx + Ux , 

and Hamiltonian function 

H = i U- 5/ 2.U; . 

Using the results in Ref. 11, or by direct inspection, we see 
that the transformation 

u =! v2 

transforms fii into the constant-coefficient operator Dx; in­
deed 

DQ.Dx·D~ = v.Dx·v = v2Dx + vVx = 2uDx + Ux = fii . 
In terms of v, 

H- - 2- 1/ 2 -3 2 
- V Vx ' 

and 

Ev (H) = ,J2 ( - v- 3vxx + 1 v-4v;) . 

Therefore, using Theorem 9, the canonical total Hamilto­
nian is 

H * [f{J,1T] =,J2 {1T( - f{J x- 3f{Jxxx + 1f{J x- 4f{J;x ) 

+ 1 f{J x-3f{J;x} ' 

where f{Jx = V, 1T = V are the canonically conjugate variables. 
The reader can check that the canonical Hamiltonian system 
(20) for H *, when subjected to the constraints u = ! f{J; 
= ~ r, coincides with the Harry Dym equation (22). Thus 

we have constructed a second, inequivalent, canonical form 
for this equation. 

Example 13: As a final example, consider the 
Korteweg-de Vries equation 

The first Hamiltonian structure was considered in example 
8. There is also a second Hamiltonian structure,7 with Ham­
iltonian operator 

and Hamiltonian function 
- 2 H=!u. 

According to Kupershmidt and Wilson,8 the second Hamil­
tonian operator for the Korteweg-de Vries equation can be 
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put into constant-coefficient form D x by the Miura transfor­
mation25 

1 2 U = Vx -l) V , 

which has the effect of transforming the Korteweg-de Vries 
equation into the modified Korteweg-de Vries equation 

Indeed, 

DQ.Dx·D~ = (Dx -jv).Dx ·( -Dx -jv) 

-D! - nvx -~v2)Dx - nvxx -~vvx) 

= - D! - ~ uDx - j Ux = - f1; . 

Thus, using ( 19), we obtain the canonical total Hamiltonian 

H*[cp,1T] = 11' (CPxxx -rsCP!) +~cp!, 
where CPx = 11' = v. In this case, we obtain a second canonical 
representation of the Korteweg-de Vries equation corre­
sponding to the canonical Hamiltonian system for H * sub­
ject to the constraints26 

u = CPxx -! cP; = 1Tx -! r . 
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Given a Hamiltonian of the form H = h + AV, the convergence of a Dyson-like expansion (in 
A) is constructed and shown for the Wigner distribution function that solves the quantum 
Liouville equation that corresponds to H. Here, h is a quadratic polynomial in p, q; its 
coefficients may depend continuously on time. The potential v is a function of p and t as well as 
q; roughly speaking, it is the Fourier transform of a time-dependent measure. 

I. INTRODUCTION 

For a system with n degrees of freedom, a state in the 
Wigner-Weyl phase-space formulation of quantum me­
chanics is a function p (the Wigner distribution function) 
that is defined and continuous on R2n, and that satisfies cer­
tain positivity conditions. I,2,3 If the system is subject to 
forces arising from a Hamiltonian function H ( q, p,t), then its 
state changes according to the quantum Liouville equa­
tion3.4 

ap i i 
-=- [p,H]=- (poH -Hop), at fz fz 

(1.1 ) 

where the product poH is the phase-spac~ function that cor­
responds to the operator product pXH. [If a(q,p) and 
b (q,p) are two functions on phase space, and if one adopts 
the conventions for the Weyl correspondence used by Voros 
(cf. Ref. 5, Sec. III), then 

(aob)(q,p) = _I_J dnPI dnQI d np2 d
n Q2 

(1rli) 2n 

X{a(q + QI' p + PI)b(q + Q2' p + P z) 

xexp[(2ilfz)(QI'P2 - Q2,PI)]}' (1.2) 

The integration is to be understood in a (Schwartz) distribu­
tional sense.] 

In this paper, I will construct and show the convergence 
of "Dyson" expansions for solutions to the quantum Liou­
ville equation, given that the Hamiltonian H has the form 

H(q,p,t) = h(q,p,t) + Av(q,p,t). (1.3) 

Here, h is a real-valued, time-dependent quadratic function 
of q, p; specifically, 

I { n 
h(q,p,t) = 2" j,t; I [ajk (t)qjqk 

+ bjk (t)(qjh + qkPj) + cjk (t)pjh ] }, (1.4) 

where the various coefficients are real-valued, continuous 
functions oft only, and the matrices ajk , bjk , andcjk are sym­
metric. (I do not, however, need to assume that they are non­
negative matrices.) 

0) Permanent address: Department of Mathematics, Texas A&M Universi­
ty, College Station, Texas 77843. 

The perturbing potential v, which depends on momen­
tum and time as well as position, is real valued, and it is 
assumed to have the form 

v(q,p,t) = ~ f /(q',p',t)exp(~ (pq' - q.p') )d,u(q',q'), 

( 1.5) 

where d,u is a positive, finite measure on R2n, and / is in 
L 00 (R2n + I, d,u X dt). In addition, the condition that v be 
real valued forces/and d,u to obey a reflection condition,6 

/(q',p',t)d,u(q',p') =/( - q', - p',t)d,u( - q', - p'). 
( 1.6) 

Finally, that v is of the form (1.5) implies that, for all p,q,t, 

Iv(p,q,t) I < (fz/2) II/II oo,u (R2n ) ( 1. 7) 

and that, when t is fixed, v is continuous in q and p.7 
I have chosen to work with the class of potentials de­

scribed above because it is the natural one for the mathemat­
ical techniques that I will use, and because it contains a num­
ber of physically interesting examples. For instance, every 
periodic, one-dimensional potential of the form 

00 {21Tiq } v(q,t) = n ~~ 00 an (t)bn exp G n , 

where G is the period, lan(t)I<C for all n, and where 
~ Ibn I < 00, is in the class. (Higher-dimensional periodic po­
tentials satisfying similar conditions also belong to it. ) 

One novel feature of this class is that the potentials in it 
can be functions of momentum, time, and position. In the 
usual configuration space approach to quantum mechanics, 
such potentials would be nonlocal and troublesome to han­
dle, but in the phase-space approach they can be handled in 
the same way as potentials that depend only on position. 

Several workers have dealt with potentials belonging to 
classes that are similar to the one worked with here. In parti­
cular, Osborn and Fujiwara,6 Albeverio and H0egh-Krohn,8 

Ito,9 and Combe et al.I all employ them. 
Indeed, Combe et al. I solve the quantum Liouville equa­

tion for a class of time-independent Hamiltonians that are 
perturbations of a harmonic-oscillator Hamiltonian by a po­
tential that is of the form (1. 5), except that it does not de­
pend on time. The results they get and the methods they use 
involve dealing with stochastic processes in a "Fourier trans­
formed" phase space. 

The paper is organized this way. In Sec. II, I introduce 
notation, review the theory ofWigner-Weyl transforms, and 
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determine the distribution that corresponds to the commu­
tator in (1.1). In Sec. III, after reviewing the definition of 
"state" in the phase-space formulation of quantum mechan­
ics, I put the quantum Liouville equation into a form, an 
integral form, suitable for solving via the method of succes­
sive approximations. In Sec. IV, I obtain a Dyson-like ex­
pansion that solves the quantum Liouville equation when its 
initial conditions are taken to be in a Banach spaceX that has 
certain "nice" properties. I then show that one may take X to 
be any of a wide variety of spaces, among which is included 
the space of functions that are Wigner transforms of trace­
class operators, T. In Sec. V, I show that the solution to the 
quantum Liouville equation not only preserves the cone of 
states, but it also preserves the set of pure (extremal) states. 
In Sec. VI, I discuss possible applications, and I show how to 
treat Hamiltonians that are of the form (1.3), but that have 
additional linear terms. Finally, I make a few concluding 
remarks. 

II. THE WIGNER AND WEYL TRANSFORMS 

I want to introduce and establish notation, review brief­
ly the Wigner and Weyl transforms, and prove a few results 
that will enable me to determine the tempered distribution 
that corresponds to the commutator that appears in the 
quantum Liouville equation (1.1). 

There are two pieces of notation that will simplify many 
of the formulas used in the rest of the paper. First, let 

z = (p,q) = (ql, ... ,qn;PI, ... ,Pn)' 
(2.1 ) 

dz = dql···dqn dpl···dPn, 

and, second, define the symplectic form u via 

u(z,z')=(21Ii) (p.q' - q.p'). (2.2) 

Using (2.1) and (2.2), one may rewrite (1.2) as 

(aob)(z) = __ 1_ f dZI dZ2 a(z + zl)b(z +z2)e - iu(Z"Zz), 
(trli) 2n 

(2.3) 

and (1.5) as 

v(z,t) = ~ f I (z',t)eiu(Z,z') dJ.l(z'). (2.4 ) 

This notation also simplifies the formulas for the "sym­
plectic" Fourier transform. If g(z) is a phase-space function 
that is in, say, L I(R2n), then its symplectic Fourier trans­
form is 

g(Z)=-l_f g (Z')eiU(Z,Z') dz'. 
(trli)n 

(2.5) 

The formula giving the inverse of the transform is identical 
to (2.5), except that g and g are interchanged: 

g(z) = _1_ fg(z')eiU(Z,Z') dz'. (2.6) 
(trli) n 

Symplectic Fourier transforms play an important role in 
the Wigner-Weyl phase-space formalism. Both the Weyl 
transform, which takes phase-space functions into operators 
on a quantum mechanical system's Hilbert space, and the 
Wigner transform, which inverts the Weyl transform, are 
closely related to such Fourier transforms. 
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The Weyl transform 1,3,4,5 works this way: Let ,Jf' be the 
HilbertspaceL 2 (Rn,d ns),andletqj,pj (j= 1, ... ,n),andz 
be defined by 

qjl(s) = Sjl(s), <Pjl)(s) = - ih :[ (s), 

(2.7) 

z = (ql, ... ,qn;PI, ... ,Pn)' 

The operator on,Jf' associated with the phase-space function 
g(z) is 

g = _1_ fg(z')eiU(Z,z') dz', (2.8) 
(trli)n 

where the Weyl operators eiu(!,z') satisfy the Weyl rela­
tionsl •3,4.1O,1I 

[The action of eiu(z,z) on a function in,Jf' is l 

(exp[iu(z,z)] I )(S) 

= exp[ - (2ilh)p· (q + S) 11(s + 2q).J 

(2.9) 

(2.10) 

In addition to being able to map functions into opera­
tors, one can extend the Weyl transform in a way that allows 
mapping finite measures to operators,2 or even distributions 
to operators. 11-15 For example, the operator 

Ii f . (A ') v=T l(z',t)e'UZ'Z dJ.l(z') (2.11) 

is the one associated with the measure used in (2.4) to define 
v. 

Remarkably, it is also possible to directly write v in 
terms of v. Grossmann 10 has shown that if one is given a 
function g(z) defined on phase space, and if one defines the 
parity operator TI by 

TI/(s) =/( - S), 

then one obtains for g 

g = _1_ (fg(z)TIeiU(Z,Z) dZ). 
( trli)n 

Replacing g by v in (2.13) gives v in terms of v. 

(2.12) 

(2.13 ) 

One inverts the Weyl transform by means of the Wigner 
transform. If g is a trace-class operator that corresponds to g, 
then l 

g(z) = 2n trace(geiU(Z,Z»). (2.14) 
A _ 

Since, by (2.13), ng = g, and since g = g, one has 10, II 

g(z) = 2n trace(TI geiU(Z,Z»). (2.15 ) 

Using this form for g, one can easily prove this proposition, 
which contains well-known results (Ref. 13, Theorem 
3.5.4). 

Proposition 2.1: If g is trace class, and if g is the Wigner 
transform of g, then g(z) is continuous in z, vanishes at infin­
ity, and is inL 2(R2n). In addition, one can choose an ortho­
normal basis in Jf" = L 2(Rn) for which trace(IIgeiU(Z,Z» 

w'iII be, when expanded in terms of this basis, an absolutely 
and uniformly convergent series. 

Proof: The only statement that requires comment is the 
existence of the basis mentioned in the proof. Using rather 
standard results from operator theory (Ref. 16, Sees. 2.2 and 
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2.3), we can easily show that the orthonormal basis {lh}): 1 
gotten from diagonalizing the non-negative operator 
n gg*n will work. 

Later on I will needgov - vog, whereg(z) is the Wigner 
transform of a trace-class operator and v is defined by (2.4). 
While I could use (2.3) to do this, I will not. It is easier to 
obtain the formula directly from (2.15). 

Corollary 2.1: Let g be a trace-class operator defined on 
the Hilbert space Jr'=L 2(Rn,d ns), and let g(z) be its 
Wigner transform. If v is given by (2.4), then 

(gov - vog) (z) 

= - iii f g(z + z')lm{j (z',t)eiU(z.z'l} dj.l(z'). (2.16) 

Proof The operator u defined by (2.11) is bounded, and 
so both gu and ug are trace-class operators. 16 Thus (2.15) 
applies: 

(2.17) 

One may put this into the form of an integral this way. First, 
in (2.17) replace D by its integral form (2.11), then inter­
change trace and integral; this may be justified by expanding 
the trace in the orthonormal basis described in the proof of 
Proposition 2.1. Second, use the Weyl relations (2.9) to sim­
plify the integrand. Third, employing (2.15), (1.6), and an 
obvious change of variables in the integral, one gets 

gov(z) = ~ . f g(z+z')e-iU(Z,Z') j(z',t)dj.l(z'). (2.18) 

A similar computation gives 

vog(z) = ~ . f g(z + z')eia(z,Z')j(z',t)dj.l(z'). (2.19) 

Subtract (2.19) from (2.18) and use - 2i Im(c) = c - c to 
get (2.16). This ends the proof. 

There is a second commutator that I want to compute, 
goh - hog, where h is defined by (1.4) and g is the Wigner 
transform of a trace-class operator g. Since h, the operator 
that corresponds to h, is unbounded, the products gh and hg 
may also be unbounded; even worse, hg may not be densely 
defined. Even so, it is possible to interpret both goh and hog 
as tempered distributions.5,ll.12,13 

To get this interpretation, first note that the mappings 
rp-</J0h and rp~horp are well-defined, continuous mappings 
from Schwartz space into itself. (See Ref. 5, Theorem 2.4.1; 
rpE S _ 00 and hE S2 in Voros's notation.) In addition, the 
mapping "'~(21Th)n trace(g¢,) defines a continuous linear 
functional in Schwartz space, and so both 
rp~(21Th)n trace (g(rpoh») and ~(21Th)n trace(ghorp) de­
fine such functionals. Finally, define goh and hog to be the 
tempered distributions given by these continuous linear 
functionals: 

rp~ f (goh)(z)rp (z)dz= (21Tfz)n trace(ghorp) , 

rp--+ f (hog) (z)rp(z)dz=(21Tfz)n trace(grpoh), 

where rp is a Schwartz function. 

(2.20) 

Having defined hog andgoh by (2.20), I can now com-
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pute the comutator goh - hog. 

Proposition 2.2: If g(z) is the Wigner transform of a 
trace-class operator g, and if h (z) is given by (1.4), then 
goh - hog is the tempered distribution 

goh - hog = - (Ii/i){g,h}, (2.21) 

where { , } is the usual Poisson bracket 

(2.22) 

and where the derivatives are taken in a distributional 
sense. 17 

Proof' Let rp(z) be a Schwartz function. From (2.20) 
and the formula (21Th)n trace(ab) = Sa(z)b(z)dz, 11.18 one 
has 

f (goh(z) - hog(z»)rp(z) 

= (21Th)n trace [g(horp - rpoh)] 

= J g(z)(horp(z) - rpoh(z»)dz. (2.23) 

Using a formula found in Ref. 5 [Theorem 2.4.1, part (iii)], 
one can compute horp - rpoh when rp is a Schwartz function; 
the result is 

hOrp - rpoh = - (Ii/i){h,rp}. (2.24) 

Inserting (2.24) into (2.23) and integrating by parts in a 
distributional sense yield (2.21). This completes the proof. 

I want to make a few remarks about what I have just 
discussed. First of all, one can define goh or hog whenever h 
belongs to one of Voros's5 classes Sm' Functions in these 
classes are infinitely differentiable and, at infinity, behave 
like polynomials. Indeed, even when h is a polynomial of 
degree more than two, one can get a formula for goh - hog 
that is similar to (2.21). 

The second remark is that one can define operator prod­
ucts like hg and gh in a purely operator-theoretic setting. 
This in fact has been done by Hagedorn, Loss, and Slawny.19 

Finally, an approach that in some sense comes halfway 
between what I have talked about above and what Hagedorn 
et al.19 use is taken by Combe et al.1 They define certain 
commutator products via a combination of Fourier trans­
forms of Wigner distribution functions and weak-operator 
products similar to the ones used in Ref. 19. 

III. AN INTEGRAL FORM FOR THE QUANTUM 
LIOUVILLE EQUATION 

States in the Schrodinger formulation of quantum me­
chanics are the density matrices. (Recall that a density ma­
trix is a non-negative, trace-class operator whose trace is 
unity.) In the Wigner-Wey1 phase-space formulation of 
quantum mechanics, the states are Wigner distribution func­
tions, which are related to density matrices this way: Ifris a 
density matrix whose Wigner transform is r(z), then the 
Wigner distribution that corresponds to r is3 

p(z) = (21Tfz) - nr(z) = (1TIi) - n trace(nreiu(z.Z». (3.1) 

[I have used (2.15) to get the far right term in (3.1).J 
For the system described in the Introduction, states in 
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the Wigner-Weyl formulation evolve according to the quan­
tum Liouville equation 

(3.2) 

where His given by (1.3). Sincep is the Wignertransform of 
a trace-class operator, one may evaluate the commutator 
that appears in (3.2) by means of Corollary 2.1 and Proposi­
tion 2.2. Doing the evaluation results in 

ap = -{p,h}+Afp(z+Z',t) 
at 

X Im{f (z',t)eiU(Z,z')}djl(z'), (3.3 ) 

where the derivatives are taken in a distributional sense; also, 
the initial condition is p (z,O) = Pin (z). 

The form of the quantum Liouville equation given in 
(3.3) is not the best one for my purpose, which is to expandp 
in a power series in A. To get a more suitable form, first let 
cJ> ( 1') be the unique (2n) X (2n) fundamental solution that 
is associated with the linear, homogeneous, l'-dependent 
Hamiltonian system 

dpj ah d~ ah 
-= --, -=-, j= 1, ... ,n, (3.4) 
dl' aqj al' apj 

and that is subject to the initial condition cJ>(0) = I. Next, 
set 

A( 1',t) =CJ>( l')cJ>(t) -1. (3.5) 

Finally, a straightforward calculation shows that (3.3) is 
equivalent to 

p(z,t) -Pin(A(O,t)z) 

=A f dl' f djl(z')p(z' + A (l',t)z,l')lm{f (z',l') 

X exp [ia(A(l',t)z,z')]}, (3.6) 

which is the form of (3.3) that I want. 
There are several things that ought to be said now. First, 

the linear transformation z~cJ> ( l')z is, for each 1', a canoni­
cal one, for it is generated by the time evolution of a Hamilto­
nian system.20 This means that the matrix cJ>( 1') is symplec­
tic20; that is, 

(3.7) 

Clearly, the mapping z~A (l',t)z is also a linear canonical 
transformation, and so the operationp(z)~p(A(l',t)z) pre­
serves both the cone of classical states and the cone quantum 
mechanical states (the Wigner distribution functions) . 1,19,21 
Second, if one sets A = ° in (3.6), one gets that p(z,t) 
= Pin (A(O,t)z). This is interesting because it very clearly 

shows that for the system with Hamiltonian h, the difference 
between quantum and classical behavior is due entirely to 
the state chosen initially. 19,21 

Last, the work of Hagedorn et al. 19 contains a very nice 
discussion of topics related to time-dependent, quadratic 
Hamiltonians. In particular, this paper makes use of the con­
nection between the quantum and classical time evolution 
for such Hamiltonians. 
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IV. A SERIES SOLUTION TO THE QUANTUM LIOUVILLE 
EQUATION 

Having put the quantum Liouville equation into its inte­
gral form (3.6), one can easily generate a formal power se­
ries (in A) that "solves" the equation. To do this and to 
simplify many of the expressions involved, first define the 
integral operator K by 

(Kp)(z,t) = f dt f djl(z')[p(A(l',t)z +z',l') 

X Im{f (z',l') exp [ia(A ( 1',t)z,z')])], (4.1) 

and note that with this bit of notation (3.6) becomes 

p(z,t) =Po(z,t) +A(Kp)(z,t), 

Po(z,t) = Pin (A(O,t)z). 
(4.2) 

Applying the method of successive approximations,22 one 
gets the Neumann series 

00 

p(z,t;..t) = L A j(K jPo)(z,t) 
j=O 

(4.3) 

as a formal solution to (4.2). (This series is, in fact, gotten in 
the same way as the Dyson expansion that solves the opera­
tor version of Schrodinger's equation. 8,23) 

What I want to do in this section is to show that when 
Pin (z) belongs to one of several function spaces, the series 
(4.3) converges and defines an entire function of A. Before I 
can show this, I need to introduce some notation. Through­
out the rest of the section, let a be a fixed, positive number 
and letJbe the closed intervalJ = [O,al. Also, take X to bea 
Banach space having the norm Ii·lix, and take C[J,xl to be 
the Banach space of functions that continuously map J into 
X; the norm in C[J,xl is lix(t) lie = sUPteJllx(t)llx' 

I should mention that I will specify what spaces can be 
taken for X later on. Also, the only significance of J is that it 
provides a compact time interval, which is easier to deal with 
than [0,(0), Finally, one has for K 

Kp(z,t) = ;i D~(t) {fdl' f djl(z') 

X [f (z',l')(D ~(T) - IS / p )(z,l') 

- f(z',l')(D~(T)-ISZ-;- P)(Z,l'>]} , (4.4) 

where the operators DM and S l- are defined by 

(S l-g)(z) g(z + z')e ± iu(z,z') , 
(4.5) 

(DMg)(z) g(M-1z), 

for allgeX, z'eR2n, and every symplectic matrix M. 
The set of 2n X 2n symplectic matrices is a topological 

group, the symplectic group Sp(2n).20 My reason for work­
ing with such matrices stems from a fact that I discussed at 
the end of Sec. III: cJ>(s) is symplectic for every value of s. 

In order to make the method of successive approxima­
tions work, I need to make these assumptions about X, DM , 

and theS l. 
(i) There exist constants C 1 and C2 such that, for all geX, 

MeSp(2n), and z'eR2n, one has IiDMglix<c1liglix and 
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liS 19l1x<C21Igllx. 
(ii) For each fixed gEX, the mappings M-.DMg and 

z'-.s l g are strongly continuous mappings from Sp(2n) 
and R2n (respectively) into X. 

A function space X will be called admissible if it is a 
separable Banach space that satisfies (i) and (ii). For such 
spaces, one has the following technical lemmas. 

Lemma 4.1: Let X be admissible. If pEC[J,x), then 
D<l>(T) _IS l p( ·,r) are strongly continuous X-valued func­
tions of (z',r), for all (z',r)ER2n XJ. Moreover, 

IID<l>(T) -IS z:;!: p( ·,r) Ilx<clc211P( ·,r) Ilx<clc211PIic' (4.6) 

Proof It is easy to show thatDMS l p( ·,r) is jointly and 
strongly continuous in M, z', r. Since r-.<I>( r) is a contin­
uous map from R to Sp(2n), and since taking inverses is a 
continuous transformation on a topological group, the 
mapping r-.<I> ( r) -I is continuous, and 

(r,z')-.D<l>(T)-ISl p(·,r) 

are thus jointly and strongly continuous maps from J X R2n 
into X. 

The norm estimate is a direct consequence of (i), which 
holds because X is admissible. This finishes the proof. 

Lemma 4.2: LetXbe admissible. IfpEC[J,x), then the 
X-valued functions 

p+( ·,z',r) !(z',r)(D<l>(T) _IS.,+ p)( ·,r), 
(4.7) 

p_ (·,z',r)=1 (z',r) (D<l>(T) _IS z-:- p( ',r) 

are Bochner-integrable (cf. Ref. 24, Sec. 3.7) with respect to 
the measure drXdJ-l(z'). Moreover, 

F( .,f)=~ r dr dJ-l(z')[ p+ (.,z',r) - p- (·,z',r) 1 
21 J[o.! J XR2n 

(4.8) 
is in C[J,x], can be computed via 

F( .,f)=~ f dr J d,u(z') [p+ (·,z',r) - p- (·,z',r»), 
21 0 (4.9) 

and satisfies the inequality 

IIF("t)llx<clc211/11", J-l(R2n
) f II p(.,r)lIx dr. (4.10) 

Proof By Lemma 4.1, the X-valued functions 
(D<l>(T)-ISl p)(.,r) are strongly continuous in (z',r). 
Thus for every continuous linear functional g*EX *, the sca­
lar-valued functions g* [ (D <l>(T) - IS l p) (.,r)] are contin­
uous in (z', r), and are therefore measurable with respect to 
dr dJ-l(z'). This means that (D<l>(T) -IS l p)( ·,r) are, by de­
finition (Ref. 24, Definition 3.5.4), weakly measurable with 
respect to dr dJ-l (z'), and, because X is separable they are in 
fact strongly measurable with respect to dr d,u (z') (cf. Ref. 
24, Corollary 2, p. 73). Finally, since the product of measur­
able scalar-valued functions and strongly measurable vec­
tor-valued functions is itself a strongly measurable vector­
valued function (cf. Ref. 24, Theorem 3.5.4), and since 

I(z',r), I(z',r) are both bounded, measurable functions, 
the two functions p + and p - are strongly measurable. 

To see that the functions p ± are Bochner-integrable 
with respect to drXdJ-l(z'), note that from (4.6), (4.7), and 
the fact that IEL "', one has 
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lIP ± (·,z',r) Ilx<11 III '" c1c211 pIIC[J.x J' 

and so 

r drdJ-l(z')IIP± (.,z',r)llx 
JJ XR2n 

<acIC2J-l(R
2
n)ll/ll", II pllc[J.x J' 

(4.11 ) 

( 4.12) 

From (4.12) and the strong measurability of p ± , it follows 
that p ± are Bochner-integrable with respect to dr dJ-l (z') 
(cf. Ref. 24, Theorem 3.7.4). 

Seeing that F( .,t) is in C[J,xl is not hard. From (4.11) 
and Theorem 3.7.6 of Ref. 24, one has the inequality 

IIF(.,f2 ) - F( ·,fl )IIx<constX If2 - fll, (4.13) 

which implies the continuity of F( ·,f) in ton J. 
Equation (4.9) follows from (4.8) and the Bochner­

integral analog of Fubini's theorem (Ref. 24, Theorem 
3.7.13). The inequality (4.10) results from applying 
Theorem 3.7.6 of Ref. 24 to (4.8) and then using the inequa­
lity in (4.6). The proof is ended. 

Lemma 4.2 is important because it shows how to make 
sense out of the integral used to define Kp(Z,f) in (4.4). 
Indeed, using (4.4) and the function F( ',f) defined in (4.8), 
one has 

Kp(z,f) = D<l>(t)F(z,t). (4.14 ) 

Assuming that the hypotheses of Lemma 4.2 hold, one 
can show that (Kp )(z,f) is in C[J,x], and one can get 
bounds for the norm of K j. To see that KPEC[ J,xl. first note 
that FEC[ J,x), and that f-.<I> (t) is a continuous mapping of 
J into Sp(2n). Using an argument similar to the one em­
ployed in the proof of Lemma 4.1, one then gets that 
KpEC[J,xl. 

One gets the norm estimates this way. First, since X is 
admissible and <I>(t)ESp(2n), assumption (i) from the de­
finition of admissibility implies that 

IIKp( ',f) Ilx<cIIIF( ·,f) Ilx. (4.15 ) 

Combining (4.10) and (4.15) yields 

IIKp(·,t)lIx<c f IIp(·,r)lIx dr, 

( 4.16) 

c=cic211/11", J-l(R2n ). 

"Bootstrapping" (4.16), using 11P("t)llx<llpllc[J.x J' and 
doing a standard multiple integral result in 

K jp( ·,t) IIx< [(cf)jl)] 11P11C[J.x J' 

Finally, taking the supremum in (4.17) gives 

11K ipllc[J.x J< [(cali 1}1] IIpllc[J,x J' 

( 4.17) 

(4.18 ) 

The norm estimates in ( 4.18) are sufficient to guarantee 
the convergence of (4.3), provided Po(Z,t)EC[J,x]. For if 
POEC[J,x] , then the series in (4.3) is majorized by the power 
series for exp(calA I), and so it converges for all values of A 
to a C[J,xl-valued entire function of A,p(Z,t;A,). 

By plugging the series Ofp(Z,f;A,) into the integral equa­
tion in (4.2), one can see that, apart from the special form of 
Po used there, p satisfies the equation for every PoEC[J,x]. 
Also, a standard argument shows that the solution is unique. 

Thus, the only question left is whether the function 
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Po(z,t)-D<t>(t) Pin (z) (4.19) 
belongs to C[JX]. [Note: A(O,t) = <I>(t) -I because 
<1>(0) = I.l The answer is yes, provided only that Pin (z)EX. 
The argument is much the same as that used in Lemma 4.1 or 
the one used to show thatK: C[JX1-C[JX1, and so I will 
omit it. 

The next theorem is a summary of the results gotten in 
the discussion given above. 

Theorem 4.1: Let X be admissible and let Po (z,t) be in 
C[ J Xl. If in (4.4) the integrals are taken in the sense of 
Bochner, then K maps C[JX] into itself, and satisfies the 
bounds (4.16) and (4.17). In addition, the Neumann series 
( 4. 3) converges to a C[ J Xl -valued entire function P (Z,t;A) 
that uniquely solves the integral equation in (4.2). Finally, if 
Pin (z)EX, thenpo(z,t) ==Pin (A(O,t)z) belongs to C[JX1, and 
the corresponding function P(z,t;A) defined by (4.3) 
uniquely solves the problem posed in (4.2). 

The main hypothesis of Theorem 4.1, whose conclu­
sions regarding the convergence of (4.3) and the solution of 
(4.2) are what I have been working towards, is the admissi­
bility of X. In the lemma below, I give a list of spaces that are 
admissible. 

Theorem 4.2: The following spaces are admissible: 
Co(Hz,,), the space offunctions continuous on HZ" and van­
ishing at 00; L P (H2

,,), with 1 <p < 00; T, the space offunc­
tions that are Wigner transforms of trace-class operators 
(the norm for geT is IIgIlT=lIglitrace); andXlnX'2' whenever 
XI and X 2 are admissible. (The norm in XlnX'2 is 11·lIx,1"lX

2 

= max{II·lIx"II·lIx).) 
Proof: The L P spaces (1<p < 00) and Co(Rz,,) are all 

well known to be separable spaces. T is also separable be­
cause it is isometrically isomorphic to CI (JY), the Banach 
space of trace-class operators on JY = L 2(H2

,,); CI (JY) is 
the trace-norm closure of the span of finite rank operators, 16 

and so it is separable. Finally, because the intersection of 
separable Banach spaces is separable, and because XI andX2, 

being admissible, are separable, the intersection XlnX'2 is 
separable. [It is very easy to check that XlnX'2 satisfies as­
sumptions (i) and (ii), and so there is no need to discuss 
X lnX'2 in the rest of the proof. ] 

Fix MeSp (2n), the set of 2n X 2n real symplectic matri­
ces, and consider the operator D M defined in ( 4. 5) . 
Because20 detM=det(M- I) = 1, the measure dz=dql 

···dq" dpI···dp" is invariant under the transformation 
z_M -IZ, so the operator DM is actually an isometry for the 
L P spaces. Also, becauseDMg(z) = goM -I (z),DM will not 
affect suplgl, the behavior of gat 00, or the continuity prop­
erties of g; hence DM is an isometry for CO(R2

,,). 

DM is an isometry for T, too. IfgeT, then (2.15) gives 

DMg(z) = 2" trace(n geiU(M-'z,z) (4,20) 

Using the fact that M -I leaves u invariant [see Eq. (3.7)] 
and (2,9), one finds that the operators 

W M (z) = eiU(z,M - 'z) 

satisfy the Weyl relations, 

(4.21 ) 

WM(ZI) WM (Z2) = eiU(Z"Z2) WM (Zl + Z2)' (4.22) 

Since, in addition, for M fixed, they form an irreducible, 
unitary family, von Neumann's theorem25 implies the exis-
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tence of a unitary operator U M such that for every zeR2
" 

WM(z)==eiu(z,M-'Z) = U~eiU(Z,Z)UM' 

From this, (4.20), and (2.15), one gets that 

DMg= nUMngU~. 

(4.23 ) 

(4.24) 

Moreover, neither pre- nor postmultiplying by unitary oper­
ators changes the trace-norm, so ,.,-........ 

IIDMglI T = IIDMglltrace = IIglitrace = IIgIIT; (4.25) 

hence DM is an isometry for T. 
Even the S l are isometries for Co (H2

,,), the L P, and T. 
Except for T, this is obvious. To deal with T, let geT. Note 
that, from (2.15) and the Weyl relations (2.9), one has 

S z- g = geiU(z',Z) (4.26) 
S / g = neiu(z,Z)n g. 

Again, because pre- or postmultiplying by a unitary operator 
leaves the trace-norm unchanged, one gets ,.,-........ 

liS l gil T = liS l gil trace = IIglitraee = IIgll T' (4.27) 

and so that S /' are isometries for T. 
Having verified that the spaces listed satisfy assumption 

(i), I now want to tum to showing that the D M and S l are 
strongly continuous in M and z', respectively. I will do the 
DM first. 

Using the definition of DM , one can easily show that the 
mapping M-D M is a faithful representation of Sp (2n), and 
so, in the usual way, one sees that DM being continuous at 
given Mo is equivalent to D M being continuous at M = I, the 
identity matrix. This reduction and standard analytical ar­
guments are enough to show that DM is continuous on 
CO(H2

,,) and on the L P-spaces (l<p < 00). 

Once again, T's case takes some work. First of all, if geT, 
thengeCI (JY), and it looks like l6 

g=glg2' (4.28) 

where gl and g2 are in C2(JY), the set of Hilbert-Schmidt 
operators. The space C2 (JY) is, under the Wigner-Weyl 
transform, isometrically isomorphic to L 2(R2

,,) (see Ref. 
18), and thefunctiong equivalentto b1in (4.28) has the form 

g(z) =glog2(Z), (4.29) 

where "0" is the same as in (2,3), and wheregl andg2 are in 
L 2(R2

,,). By making the changes of variables zl_M -IZI 
and Z2-M-1Z2 in (2.3), and by noting that 
u(M-IzI,M -IZ2 ) = U(ZI,z2) andthatdet(M) = 1,0nesees 
that 

(DMg)(z) = (DM g I )0(DMg2)(Z), (4.30) 

and that 
Dmg-g=DMglo(DMg2 -g2) + (DMg1 -gl)og2' 

(4.31) 

and,~that_ ~ ~ 
DMg - g = DMg1 (DMg2 - g2) + (DMgI - gl )g2' 

(4.32) 
Second, take the trace-norm of both sides, and use 

IIAB IItrace <IIA IIc
2

11B IIc
2 

(see Ref. 16) to get the inequality 
~ 

IIDMg -..lJhrace ~ ~ 
<1]DMgJlc,llDMg2 - g2 II C2 + IIDMg1 - glllc

2
lg211c" 

(4.33) 
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Since C2 is isometrically isomorphic to L 2(R2n ), the 
Wigner-transformed version of (4.33) is 

IIDMg-gIi T 

<llglli L 2liD Mg2 - g211 L 2 + IIg211L ,liD MgI - g111L 2; 

(4.34 ) 

here, I have also used the fact that the DM are isometries on 
L 2(R2n). Using the continuity of DM on L 2(R2n) and the 
inequality (4.34) gives limM_111DMg - gilT = 0, so theDM 
are continuous at the identity when they act on T. By the 
remarks made earlier, this means thatDM is strongly contin­
uous on T. 

Similar arguments are sufficient to get the continuity of 
S l in z' for the spaces Co(R2n ), L P(R2n ), and T. As in the 
case of the DM , one may reduce the problem of showing 
continuity on T to one of showing continuity on L 2 via 

S / (glog2)(Z) = [(S / gl)og2] (z), 

S z:- (glog2)(Z) = [gIO(S z:-g2)] (z). 

This completes the proof. 

(4.35 ) 

Of course, one immediately has this corollary. 
Corollary 4.1: The conclusions of Theorem 4.1 hold 

when X is Co(R2n ), any L P(R2n) with l<p < 00, T, or any 
finite intersection of the preceding spaces. Moreover, for 
these spaces, one may take CI = 1 and C2 = 1 in (4.16)­
(4.18). 

Proof" Only the last statement requires comment. In 
proving Theorem 4.2, I actually showed that DM and S l 
were isometries on Co (R2n ), the L P and T. Hence, for these 
spaces one has C I = C2 = 1. Indeed, examining the definition 
of the intersection of two Banach spaces shows that the oper­
ators are isometries for intersections too; hence, CI = C2 = 1 
for these as well. The proof is done. 

I remark that L 00 (R2n) is conspicuously absent from 
the list of spaces in Corollary 4.1. This is because L 00 is not 
admissible, for it is not separable and it fails to satisfy as­
sumption (ii). 

Of course, from the point of view of quantum mechan­
ics, T is the most important of the spaces listed in Corollary 
4.1. Unfortunately, it is also the most difficult to work with. 
The other spaces, though of less physical importance, are, 
from a mathematical point of view, more tractable. 

Among the spaces listed, the best substitute for T is per­
haps Co(R2n )n L 2(R2n). To the best of my knowledge, this 
space encompasses all of the known "generic" properties of 
T, and, indeed, it contains T. (See Ref. 13, Theorem 3.5.4.) 

The reverse inclusion does not hold, however. The func­
tion g defined by 

g(q,p) = __ sin __ 0_ sin __ 0_ fz ( 2 qp') ( 2 pq' ) 
1Tqp fz fz 

( 4.36) 

is the symplectic Fourier transform of g, the characteristic 
function for the rectangle [ - qb ,qb ] X [ - pb ,pb ] . Clearly, 
g is continuous, falls to ° at 00, and is in L 2. On the other 
hand, g is not continuous and therefore cannot be in T. Since 
taking symplectic transforms preserves T, and sinceg = g, g 
cannot be in T either. 
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V. TIME EVOLUTION OF THE CONE OF STATES 

There is one point that I have not touched upon, but that 
I ought to say something about. In Sec. IV, I showed that 
(4.2) is uniquely solved by (4.3) for a variety of spaces, 
including T, the space of functions that are Wigner trans­
forms of trace-class operators. Now, T contains the cone of 
Wigner distribution functions (the phase-space functions 
that correspond to the usual quantum mechanical states, the 
density matrices), and the solution (4.3) should preserve 
this cone as well as Titself. I want to show that this is indeed 
the case. 

The first step in showing that the cone is preserved is to 
rewrite (4.2) with K in terms of a commutator instead of an 
integral over dfl (z'). One can do this by combining (2.16), 
(4.2), (4.4), and (4.19). The result is 

p(z,t) = D4>(t) {Pin (Z) 

+ ~ f d1'D4>(T)-'[P(o,1'),V(o,1')](Z)}, (5.l) 

where [a,b] = aob - boa. 

Two things follow from (5.1). The first is that 

J p(z,t)dz = J Pin (z)dz, (5.2) 

because, for every MESp(2n), fCDMg) (z)dz = fg(z)dz and 
because f[a,b] (z)dz = 0; the second is that 

a 
at [(D 4>(t) - 1 p) (z,t) ] 

= (ilfz)D4>(t) -I [p( o,t),v( o,t)] (z), (5.3 ) 

which holds for almost every t. Using (4.30), one may re­
write (5.3) as 

a 
at [(D 4>(t) - 1 P )(z,t) ] 

= (ilfz) [ D 4>(t) - 1 p,D 4>(t) - 1 v] (z). (5.4 ) 

If PI and P2 are two arbitrary T-valued solutions to 
(5.1), with PI (z,Q) =Pi~)(Z) andp2(z,0) =Pi~2)(Z). then a 
straightforward computation, using (5.4), (4.30), and ele­
mentary properties of commutators, yields 

a 
at [D4>(t) -I (PIOp2) (z,t)] 

= (ilfz)D4>(t)_' [Plop2'V](Z). (5.5) 

Integrating (5.5) then implies thatpl op2 satisfies (5.1) with 
Pin = p~) (z) °Pi<;)' The uniqueness of solutions to (5.1) then 
gives the following theorem. 

Theorem 501: If p(z,t) solves (5.1) with p(z,O) 

= P~)oPi<;)(Z), where bothpi~) andpi<;) are in T, then 

( 5.6) 

where PI and pz solve (5.5) with the initial conditions 
PI(Z,Q) =P~)(Z)'P2(Z,0) =p~)(z). 

As corollaries to this theorem, I will now show that the 
solution to (5.1) not only preserves the cone of states, but 
that it also preserves the pure (extremal) states of that cone. 

Corollary 5.1: If Pin (z) is a Wigner distribution function 
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that corresponds to a pure state (rank-one orthogonal pro­
jection), then the solution P (z,t) to (5.1) does too. 

Proof: The function Pin (z) corresponds to a pure state if 
and only if SPin (z)dz = 1 and Pin °Pin (Z) = (21rlWPin (z). 
Now, letp(z,t) be the solution to (5.1) that hasPin (z) as its 
initial value. By Theorem 5.1, pop(z,t) is the solution to 
(5.1) that has initial value Pin (Z)OPin (Z) = (217'1WPin (z). 
By the uniqueness of solutions to (5.1), one then gets that 
pop(z,t) = (27Tfz)np (z,t). Since SPin (z)dz = 1, (5.2) im­
plies that Sp(z,t)dz = 1. Hence, for each fixed t, p(z,t) is a 
Wigner distribution function that corresponds to a pure 
state. 

Corollary 5.2: If Pin (z) is a Wigner distribution function 
(WOP) that corresponds to a state (density matrix), then 
the solutionp(z,t) to (5.1) does too. 

Proof: Using the spectral resolution of the density ma­
trix, one may write Pin (z) as this convex combination of 
WOP's coming from pure states: 

00 

Pin (Z) = I/3jPiV)(Z), (5.7) 
j= 1 

where /3j >0 and I.t= 1 /3j = 1. By the principle of superposi­
tion, 

00 

p(z,t) = I /3j Pj (z,t), (5.8) 
j=l 

where the Pj (z,t) are the solutions to (5.1) that correspond 
to the initial values OfpiVl (z). By Corollary 5.1, thepj (z,t)'s 
correspond to pure states; thus p(z,t) is a convex combina­
tion of WOP's corresponding to pure states, and so it itself is 
a WOP corresponding to a mixed state. This ends the proof. 

These two corollaries show that mixed states evolve into 
mixed states, and pure states into pure states. No crossing of 
one type into the other ever occurs. 

VI. CONCLUDING REMARKS 

I want to begin by indicating where one might apply the 
results I have gotten. One place is in approximating the time 
evolution of the WOP for a system subject to forces arising 
from a uniform electromagnetic field plus some small per­
turbing potential. (The perturbation need not be electro­
magnetic in origin.) 

As an example of such a system, consider a spinless, 
charged particle bathed in an electromagnetic field de­
scribed by the vector and scalar potentials: 

A(r) = !Boxr, ct>(r,t) = - Eor + A<;6(r,t). (6.1) 

The vectors Eo and Bo are constant; <;6(r,t) is the perturba­
tion. If the particle has a positive charge of Ne, then the 
classical nonrelativistic Hamiltonian corresponding to this 
system is23 

H(r,p,t) = (112m) (p - Ne A)2 - Ne Eor + Av(r,t), 
(6.2) 

where v = Ne <;6. (The speed of light is taken to be 1.) 
When Eo = 0, this system is a crude model of a positive­

ly charged particle in a cyclotron. Letp (r,p,t),) be the WOP 
that represents the state of this system as it evolves from 
some initial state Pin (r,p). Assuming that v has the form 
(1.5), one sees that the Hamiltonian for this system has the 
form (1.3), with 
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h(r,p,t) = (112m) (p - Ne A)2. (6.3) 

Thus Theorem 4.1 applies, and one sees that p(r,p,t),) is 
entire in A. In addition, if po(r,p,t) is the state classically 
evolved out of Pin (r,p) via the Hamiltonian h in (6.3), one 
gets the inequality 

IIp(r,p,t),) -po(r,p,t)IIT..;;(exp(ctIAI) -1)llPinIiT (6.4) 

from the bounds (4.16)-(4.18). [Here, cis given by (4.16); 
it is not the speed of light, which is 1 in the units I have 
chosen.] 

The point is that, for ct 1,1 1 « 1, the exact quantal state p 
is well approximated by the classically evolved statepo. This 
observation clears up one of those little mysteries that come 
up when one first learns quantum mechanics. Particles in a 
cyclotron are treated quite successfully with classical dy­
namics, even though the particles are certainly subject to 
quantum dynamics. (Curiously, this explanation does not 
involve the one tool one would expect it to, semiclassical 
analysis.) It would be interesting to see this kind of treat­
ment applied to a more realistic model of the system, and, for 
that model, to have quantum corrections to the dynamics 
calculated. 

When Eo#O, the Hamiltonian in (6.2) contains linear 
terms, and thus it is not, strictly speaking, in the form ( 1.3). 
Such terms are, however, easy to handle, for they can be 
removed via a time-dependent translation of the system. 

Suppose that a system has the Hamiltonian 

H'(q,p,t) = h '(q,p,t) + v' (q,p,t) , (6.5) 

where v' is of the form (1.5) and 
n 

h'(q,p,t) =h(q,p,t) + I (dj(t)qj +ej(t)pj); (6.6) 
j= 1 

the function h is given by (1.4). In addition, suppose that at 
any time t, the system is in a state represented by p' (q,p,t). 
Let (a (t) ,a (t) ) be the unique solution to the linear system 

d/3j ah I daj ah I 

-d = -a «J,a,t) , -d = - !l'f3 (a,a,t), 
t ~ t u j 

(6.7) 
aj (0) = /3j (0) = 0, j = 1, ... ,n. 

A straightforward calculation shows that the translated 
WOP 

p(q,p,t) p/(q + a(t), p + a(t),t) (6.8) 

evolves via the Hamiltonian (1.3), with v given by 

v(q,P,t)==v/(q + a(t),p + a(t),t). (6.9) 

It is easy to check that v satisfies ( 1.5) if and only if v' does, 
and so the translations (6.8) and (6.9) remove the linear 
terms. One can thus get expansions for p' using those for p. 

Although I have not looked at Hamiltonians with spin­
dependent terms, I believe that all the results that I have 
gotten will hold for them too, provided they satisfy condi­
tions like the ones I have imposed upon spin-independent 
Hamiltonians. About the only difference is that the notation 
will become more complicated. 

There are, however, Hamiltonians for which the tech­
niques I have used break down. Por example, any v (q,p) that 
is discontinuous is problematical. (Such potentials include, 
unfortunately, both the Coulomb potential and the square 
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well.) It is likely that if the potential is not too badly singu­
lar, the results still hold. On the other hand, if the potential is 
too singular, they will probably not. My opinion is that they 
will hold for potentials like the square well, but they will not 
hold for Coulomb potentials. 

In Sec. 4, I developed the various theorems about the 
convergence of (4.3) for admissible spaces. I did this be­
cause the space Tis, from a mathematical point of view, less 
tractable than some of the others. Are there admissible 
spaces other than the ones I have listed in Theorem 4.2? In 
particular, are the Wigner transforms of the von Neumann­
Schatten p-classes admissible? (See Ref. 13, Sec. 3.5 for a 
discussion of these spaces.) Also, are there better substitutes 
for T than C<f1 L 2? 
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Recently, Herrera et al. [L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. 
Galino, J. Math. Phys. 25, 3274 (1984)] studied the consequences of the existence of a one­
parameter group of conformal motions for anisotropic matter. They concluded that for special 
conformal motions, the stiff equation of state (p = 1") is singled out in a unique way, provided 
the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same 
problem is studied by using conformal collineations (which include conformal motions as 
subgroups). It is shown that, for a special conformal collineation, the stiff equation of state is 
not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the 
fluid matter. 

I. INTRODUCTION 

A space-time (V4 , g) admits a one-parameter group of 
conformal motions (Conf M) generated by a vector field S if 

Lsgab =2ugab (a,b=0, ... ,3), (1) 

where L is the Lie operator and u is an arbitrary function of 
the coordinates. Every (Conf M) must satisfy 

Ls Ue} = 8~u;e + 8~U;b - gbe~du;d· (2) 

Definition 1: A space-time V4 is said to admit a confor­
mal collineation (Conf C) (see Ref. 1) if there exists a vector 
field S for which (2) holds. 

It follows that every (Conf M) is a (Conf C) but the 
converse is not necessarily true.2 However, it is known3 that 
condition (2) is equivalent to 

Lsgab = 2u gab + hab' (3) 

where hab is a (0,2) covariant constant (symmetric) tensor. 
Definition 2: A vector field S is called affine conformal 2 

if (2) or equivalently (3) holds. 
Thus, (Conf C) is equivalent to the existence of an af­

fine conformal vector which is conformal iff hbe = Agbe ; 
A = const. For the existence of an affine conformal vector it 
is necessary that there exists a covariant constant symmetric 
tensor other than the metric tensor. In 1923, Eisenhart4 

proved that a Riemannian space with positive definite metric 
is reducible iff there exists a covariant constant (symmetric) 
tensor other than the metric tensor. Patterson5 generalized 
this result, in 1951, for the spaces of indefinite metrics under 
some conditions. In general, the problem of characterizing 
h be still remains open. However, we state a few recent results 
satisfying (3) (for which hbe is not necessarily a covariant 
constant), which have been obtained with reference to a 
symmetry property called "curvature collineation" (CC) 
defined by a vector S satisfying 

(4) 

where R a bed is the Riemannian curvature tensor. 
(1) Collinson6 has shown that a necessary condition for 

S to generate (CC) in an empty space-time of Petro v type N 
is that (3) holds with h be = at;, t:" a a real scalar and t'" the 
unique (in direction) principal vector of the Weyl tensor. 

(2) Katzin et af. 7: A nonftat conformally flat space 

admits a (Conf C) such that hbe = aRbe (c.f. also Refs. 8-
10). 

(3) As a counterexample, Levine et al. 11 have shown 
that a space of nonzero constant curvature admits only one 
hbe = gbe. Thus, for this case a proper (Conf C) cannot ex­
ist. 

Definition 3: A Conf C (Conf M) with a (CC) is called 
a special conformal collineation (motion) denoted by S 
Conf C (S Conf M). 

The purpose of this paper is to study the consequences of 
the existence of a (S Conf C) in a class of space-times having 
anisotropic and isotropic matter. 

As the paper progresses, we will indicate some advan­
tages of the useofa (S ConfC) over a (SConf M), in parti­
cular reference to a recent study of Herrera et al. 12 on confor­
mal motions. 

II. CONFORMAL COLLINEATIONS AND THE 
HYDRO DYNAMICAL VARIABLES 

Let the Einstein field equations, in appropriate units, be 

Rab - ~abR = Tab' 

where the energy-momentum tensor is prescribed by 

Tab = (I" + p) Ua Ub + pgab + (p - p)SaSb' 

R= -T= -Tb
b =l"-p-2p, 

(5) 

(6) 

where U b is the four-velocity, Sb is a unit spacelike vector 
orthogonal to Ub,1" is the energy density,p is the pressure in 
the direction of S b, and p is the pressure on the two-space 
orthogonal to Sb. 

We consider a class of space-times, satisfying Eqs. (5) 
and (6), that admit a (S Conf C). It is well known 7 that a 
(Conf C) is a (S Conf C) iff U;be = 0. The following results 
are immediate. 

Proposition 1: If a V4 admits a (S Conf C), then 
(1) 5 generates a "Ricci collineation" LsRbe = 0, 
(2) LsR be = - 2u R be - h deR bd, 
(3) LsR = - 2u R - h beR eb. 
To study the consequences of our hypothesis, we calcu­

late the Lie derivative of the Einstein equations (5) and (6). 
This provides 
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Ls(Rab -~gabR) =hcdRdcgab -~(I.t-p-2P)hab' (7) 

where we have used Proposition 1 and (3). Furthermore, 

h \R bc = [(I.t - p)/2]h bb + (I.t + p)hbc Ubu c 

(8) 

The four-velocity vector U b can be represented by 
dxb Ids, for the world line xb = xb(s) ofthe fluid. Using the 
well-known2 result Lsdxb = 0 and di2 = - gbc dxbdxc, we 
get 

Ls Ub = (0- + !hcd UCU d) Ub + hbc u c. (9) 

In a similar way, we can obtain the following: 

LsSb = (0- - !hcdSCSd)Sb + hbcSc. (10) 

Thus, the Lie derivative of the energy-momentum tensor is 

Ls Tab = [Lsl.t + Lsp + (I.t + p) (20- + hCd ucUd) ] Ua Ub 

+ (Lsp + 20-p)gab 

+ [Lsp - Lsp + (p - p) (20- - hcdSCSd ) ]SaSb 

+ phab + (I.t + p) [hac UCUb + Uahbc U C] 

+ (p - p) [hacSCSb + SahbcSC]. (11) 

Now equating (7) with (11) and then taking projections, we 
get 

Lsl.t + 20-1.t =! [(p + p)hbc UbUc - (p - p)hbcSbsc] 

- [(I.t -p)/4]h b
b, (12) 

Lsp + 20-p = H (I.t + p)hbcUbUC - (I.t - p)hbcSbs c] 

+ [(I.t-p)/4]h b
b, (13) 

Lsp + 2up = [(I.t + p)hbc Ubuc + (p - p)hbcSbS c 

- (,u - P)hbc Wbw c] + [(,u - p)/4]h bb' 
(14) 

(,u - p + 4p)hbc U bS C = 0, (15) 

(I.t + P + 2p)hbc Ubwc = 0, 

(,u + P + 2p)hbc S bW C = 0, 

(16) 

(17) 

where W b is a unit spacelike vector orthogonal to S band U b. 

Equations (12)-( 14) express the infinitesimal variations in 
the hydrodynamical variables under the (S Conf C) gener­
ated by S. We observe the following from Eqs. (15)-( 17). 

(i) If one of the components hbc Ubsc, hbc Ubw c, and 
hbcSbWC survives, then either ,u = p - 4.0 or 
,u + p + 2p = 0 (whoseisotropiccounterpartis,u + 3p = 0, 
called "curvature fluid"). 13 

(ii) If hbc Ubsc and either of hbc Ubwc and hbcSbW C 

survives, then the anisotropy disappears (p = p) and again 
we have,u + 3p = O. A general geometric/physical interpre­
tation of Eqs. (12) - ( 14) is difficult to obtain. Therefore, in 
this paper, we concentrate on a few special cases in the fol­
lowing section. 

III. ~ SPACELIKE 

We consider two specific directions, namely, (A) Sis 
collinear with S, and (B) s is orthogonal to U and S. These 
cases are specially discussed to compare our results with that 
of Herrera et al. 12 
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(A) s = a S, where a is a scalar. Then, Tbcs c = Ps b. 

Taking the divergence of this equation, using the conserva­
tion law equation Tbc;b = 0, Eqs. (13) and (14) and (3), we 
obtain 

(,u + P - 2.0) (40- + h - 2hbcS bS C) = 0, where h =h bb' 
(18) 

This leads to the following two nontrivial possibilities: 

(i),u + p - 2p = 0 or (ii) 4u + h - 2hbc S bS c = O. 
(19) 

For perfect fluids, Eq. (19) (i) reduces to the stiff state 
(,u = p). To prove that the stiff equation of state is not sin­
gled out, we must show that other solutions are possible from 
Eq. (19)(ii). For this purpose, we consider the following 
special case. 

As mentioned in the Sec. II, for a non-Einstein confor­
mally flat space hbc = yR bc ' but the converse need not be 
true. We study the converse problem by prescribing 

hbc = yRbc , y=:;60. (20) 

For a (Conf C), hbc has to be a covariant constant. Thus, our 
space-time must be Ricci recurrent (see Hall I4

). Using the 
field equations (5) and (6) and (20), we get 

(i)2hbc Ubu c = y(2,u - R), 

(ii) 2hbcS bS c = y(2p + R), (21) 

(iii) yR = h bb = h, where R = I.t - P - 2p. 

For R =:;60, using Eqs. (21) (ii) and (21) (iii) in 
(19) (ii), we obtain 

20-(1.t - P - 2p) = ph, 0-=:;60. (22) 

As hbC is parallel=>h bb = h is const. Thus, Eq. (22) can 
provide different classes of solutions for different suitable 
choices of the function 0-. Therefore, the stiff equation of 
state is not singled out when S is orthogonal to U. 

(B) s is orthogonal to U and S. Proceeding exactly as in 
(A), we obtain the following two nontrivial possibilities: 

(i) I.t = P or (ii) 40- = h + hbc Ubu c - hbcS bS c. (23) 

For Ricci-recurrent spaces satisfying (20), Eq. (23) (ii) re­
duces to 

20-(,u - p - 2.0) = hp, 0-=:;60. (24) 

Thus, for this case, either,u = p with no constraints on p or 
there are other possible solutions generated from Eq. (24) 
for suitable values of 0-. The dominant energy condition for 
(A) and (B) is satisfied if 40- + h;;.O. 

Conclusions: ( 1) The stiff equation of state is not singled 
out when S is orthogonal to U. 

(2) Equations (22) and (24) provide perfect fluid solu­
tions iff 

0- = ph 1(2,u - 6p), R =:;60, 0-=:;60. (25) 

(3) For any choice of nonzero o-otherthan (25) (satis­
fying energy co.ndition) different anisotropic solutions are 
possible. 

Remark 1: Herrera et al. 12 have recently discussed this 
topic with respect to conformal motion. Some of their con­
clusions are the following. 

(a) Under their assumptions, the existence of a one-
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parameter group of conformal motions introduces specific 
restrictions on the hydrodynamical variables. 

(b) Furthermore, for a (S Conf M), the stiff equation of 
state is singled out in a unique way, provided S is orthogonal 
to U. 

Comparing their conclusion (b) with the present work, 
it is clear from Eqs. (19 )-( 25) that the use of an affine con­
formal vector field has certain advantages. For example, the 
stiff equation of state is not singled out when S is orthogonal 
to U. 

IV. s TIMELIKE 

In this section, we assume thats = a U, a being a scalar. 
Then, proceeding exactly as in Sec. III (A), we can obtain 
the following two nontrivial possibilities of solutions: 

(i) p + P + 2p = 0 or (ii) 4u + h + 2hbc Ubuc = o. 
(26) 

For perfect fluids, (26) (i) reduces to p + 3p = O. This 
equation of state has been used earlier in several exact solu­
tions (see, for example, conformally flat solutions, Sec. 
32.5.3, pp. 370 and 371 of Ref. 15) (cf., also, McIntosh). 16,17 

To investigate the case (26) (ii), we take the Lie derivative 
of S b = aU b. This provides 

(27) 

Making use ofEq. (9) in above equation, we get 

Lua=O'-!hbcUbU C
• (2S) 

Now taking the divergence of Sb = aU b and using (27), we 
obtain 

L ua=4u-a()+h, (29) 

where () = U b;b is the volume expansion of the fluid. Finally 
eliminating Lua from Eqs. (2S) and (29) and using 
(26) (ii), we obtain 

SO' = 4a() - h. (30) 

Thus, 0' is const iff a() = const<=>s is an affine collineation.7 

To show that solutions (other than curvature fluid 
p + 3p = 0) are possible from the Eq. (26) (ii), we use the 
Ricci-recurrent spaces satisfying Eqs. (20) and (21). This 
provides 

20'(p - p - 2p) + hp = 0, R #0 and 0'#0. (31) 

Thus, it is possible to generate solutions (other than the cur­
vature fluid) for the case (26) (ii) by assigning in Eq. (31) 
suitable values of the function 0'. The dominant energy con­
dition is satisfied for 4u - h>O. 

Conclusions: (1) The curvature fluid solution is not sin­
gled out when S is collinear with U. 

(2) Equation (31) provides perfect fluid solutions iff 
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0'=hp/(6p-2p), R#O, 0'#0. (32) 
(3) For any choice of nonzero 0' other than (32) and 

satisfying the energy condition, different anisotropic solu­
tions are possible. 

(4) For 0' = const a (S Conf C) in a non-Einstein con­
formally flat space reduces to a (AC).7 In particular, the 
volume expansion () = ~ = - h /S. Observe that for this 
case, the energy condition is satisfied if h is negative. An 
example of such a space is the Einstein cosmological model. 7 

Remark 2: Following Sec. III. of Herrera et al.,12 we 
have found that for static spherically symmetric spaces, ei­
ther we get the stiff equation of state or the curvature fluid 
for all the cases discussed in this paper. 

V. CONCLUDING REMARK 

Although we also do not know for sure the precise rea­
sons for the link between the stiff equation of state (as ob­
served in Ref. 12) and the group of special conformal mo­
tions, nevertheless, we have shown that this possibility can 
be avoided by the use of a more general group of special 
conformal collineations [see Eqs. (22) and (24) ] . 
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Collision-free gases in static space-times are analyzed by developing previous work in static 
spherically symmetric space-times and extending the analysis to include the cases of planar and 
hyperbolic symmetry. By assuming that the distribution function of the gas inherits the space­
time symmetries, distribution solutions to the Einstein-Liouville equations, which are without 
expansion, rotation, shear, and heat flow, but which have an anisotropic stress are found. The 
conditions for the gas to behave like a perfect fluid are considered and the relation between 
equations of state and the distribution function are investigated. In particular, distribution 
functions that generate the r-law equation of state are found. The solutions are extended to 
find invariant Einstein-Maxwell-Liouville solutions for a charged gas, subject to a consistency 
condition on the invariant electromagnetic potential. Finally, the general solution of Liouville's 
equation in the static space-times is obtained and a particular nonstatic solution is considered, 
which can be shown to lead to a self-gravitating gas with expansion, shear, and heat flow. 

I. INTRODUCTION 

Static spherically symmetric space-times have been con­
sidered in the context of general relativistic kinetic theory by 
Fackerell l and Ray. 2 In this paper we seek to extend aspects 
of their work. We include static space-times with planar and 
hyperbolic symmetry because they are naturally related to 
the spherical geometry, and our analysis allows for a unified 
treatment. (Compare the unified treatment by Collins3 for 
perfect fluids.) However, only the spherical case has a clear 
physical interpretation, for example in astrophysics and cos­
mology. 

paper4 [which considered the same problems in locally rota­
tionally symmetric (LRS) Bianchi space-times], we do not 
repeat the review in Ref. 4 of kinetic theory and symmetries, 
but refer directly to Ref. 4 where necessary, using a "P" to 
identify equations from Ref. 4 [e.g., P(3.1)]. 

The purpose of this paper is to obtain physically accep­
table distribution functions f, in order to study the gas be­
havior. Following the method of a previous paper,4 we as­
sume f is invariant under the space-time group of motions. 
This allows us to construct solutions of Liouville's equation. 
Invariant Liouville solutions are found in Sec. II, applying 
the techniques of Ref. 4. We show the redundancy of the 
assumption that f be a function of Killing vector constants 
of the motion. The kinematics and dynamics of the gas are 
considered in Sec. III, and we show that the invariant Liou­
ville solutions satisfy the Einstein field equations. These Ein­
stein-Liouville solutions are nonexpanding, nonrotating, 
and shear-free, as in the perfect fluid case, but they have an 
anisotropic stress. For the case of perfect fluid behavior, we 
investigate the relation between f and the energy density 
and pressure, using Fackerell's techniques l

; in particular, we 
find an f that generates the r-Iaw equation of state. In Sec. 
IV we find an invariant distribution solution to the Einstein­
Maxwell-Liouville equations for a gas of charged particles, 
extending the results of Ray . 2 In Sec. V, we find the complete 
general solution of the Liouville equation in static space­
time. Nonstatic distributions with spherical (planar, hyper­
bolic) symmetry are shown to be related to rank 2 Killing 
tensors in special space-times. These nonstatic Liouville so­
lutions are expanding and shearing, and can be shown5 to 
satisfy Einstein's equations under reasonable conditions. 

Since this paper is based on the methods of our previous 

II. INVARIANT DISTRIBUTION FUNCTIONS 

The static space-times are given in standard coordinates 
Xi = (t,r,O,r/J) = (t,xa) by6 

ds2 = - ev(r) dt 2 + e'er) dr + r(d0 2 + l:2 dr/J2) , 
(2.1) 

where l: = (O,sin O,sinh 0), for k = (0,1, - 1), giving 
(planar, spherical, hyperbolic) symmetry. The Killing vec­
tors XI of (2.1) are 

XI = cos r/Ja e - sin r/J(l:'/l:)a4>, 

X2 = sin r/J ae + cos r/J(l:'/l:)a4>, (2.2) 

X3 = a4>' X4 = at> 
giving the nonzero structure constants 

C\3= -CI32=C231= -C2
13 =k2+k-l, 

C\2= -C 3
21 =k2. 

In the orthonormal one-form basis 

(J)a = {ev/2 dt,e'/2 dr,r dO,rl: dr/J}, 

the Einstein tensor is 

Goo = kr- 2 _ e -A(r-2 _ r-IA '), 

G 11 = _ kr-2 + e-A.(r-2 + ,-IV'), 

G 22 = G 33 = e- A [2v" + (v' -A')(v' + 2r- I )]l4, 

Gab = 0 for a=lb. 

(2.3) 

(2.4 ) 

(2.5) 

A collision-free gas of particles (mass m, four-momentum 
p) has distribution function f(xi,pa) withgij ipi = - m2, 
satisfying Liouville's equation 

.( a . a) Lf p' -. - raijpl_ f =0. 
ax' apa 

(2.6) 
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We begin by looking for physically realistic solutions to 
the Ehlers equation P(2.19). So we are assuming that (a) f 
is invariant under the G4 of motions, and (b) f is a function 
only of Killing vector constants of the motion, YI = X/Pi' 
Using (2.3) we find the general solution of P (2.19) , 

f(xi,pQ) = F( Y4,yi + ~ + ky;), 

which becomes, using (2.1), (2.2), and (2.4), 

f = F [eVp',~( pll)2 + l?( p-P)2)] 

=F[ev12pO,r(p2)2 + (p3)2)], (2.7) 

in agreement with Fackerell l and Ray2 for static spherical 
symmetry (k = 1). 

Note how the static Killing vector leads to dependence 
of f on the constant evl2pO, which is isotropic in momentum 
space, while the G3 invariance of f leads to dependence on 
r(p2)2 + (p3)2), which is axially symmetric in momen­
tum space, corresponding to the local rotational symmetry 
at each point in space-time about the ar direction. (This 
feature is similar to that found in locally rotationally sym­
metric, spatially homogeneous space-times.4

) 

We now drop the assumption that f be a function of the 
constantsYI' and insist only that P(2.15) holds. That is, the 
only restriction placed on f is that it inherits the space-time 
symmetries. Using (2.2) we obtain the general solution of 
P(2.15), 

(2.8) 

which is also axially symmetric in momentum space. The 
most general invariant distribution function (2.8) has been 
obtained purely from geometric considerations; the colli­
sion-free behavior has not been used. Therefore we must im­
pose the Liouville equation on the invariant distribution 
function F to obtain a physical solution. The Liouville equa­
tion (2.6) for f given by (2.8) has the general solution 
(2.7). Hence we have shown the redundancy of the assump­
tion that f be a function of the Killing vector constants. This 
result is also true in spatially homogeneous locally rotation­
ally symmetric space-times.4 

Without solving (2.6) for (2.8) to obtain (2.7), we can 
show geometrically that the invariant Liouville solution 
must be based on Killing vector constants. Since 
[L, XI ] = ° [ XI is given by P(2.15)], the G4 acts on the 
six-dimensional manifold P of phase trajectories of fixed 
mass m. A function f obeying L f = ° and XI f = ° is con­
stant on the orbits of that G4 action. Since these orbits are 
four dimensional, f depends only on any two phase func­
tions that label these orbits. One such pair is given by eVlzpo 
andr(p2)2 + (p3)2), by (2.7), which is a known invariant 
Liouville solution. Hence every invariant Liouville solution 
is of the form (2.7). 

Theorem 2.1: In the static space-times (2.1), containing 
a neutral one-component collision-free gas, if the distribu­
tion function is invariant under the G4 of motions and satis­
fies Liouville's equation, then it is a function of the Killing 
vector constants of the motion, and is given by (2.7). 

Thus if f depends on any constants of the motion not 
generated by Killing vectors, then f cannot be G4 invariant. 
This will be the case, for example, if f depends on quadratic 
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first integrals generated by irreducible rank 2 Killing tensors 
such as those found in certain static spherically symmetric 
space-times by Hauser and MalhioC and Kimura.s (See Sec. 
V for further discussion. ) 

III. KINEMATICS AND DYNAMICS OF THE GAS 

A. Kinematics 

The invariance of the distribution function f implies 
invariance of the four-current density n by P (2.16). Hence 
the number density N and the kinematic average four-veloc­
ity u are G4 invariant. Thus u must be of the form 

u = e - v/2 cosh 1/1 a, + e -AI2 sinh 1/1 ar , (3.1) 

where 1/I(r) is the hyperbolic angle of tilt relative toa,. In the 
orthonormal tetrad (2.4), the four-current density P (2.5) 
for the distribution (2.7) is 

na = J pa (:0) F [ev12pO,r( p2)2 + (p3)2)]dpi23, 

(3.2) 

where the integration is over all of R3. The integrands of 
nl,n2,n3 in (3.2) are odd functions ofpl,p2, and p 3, respec­
tively. Hence n l = n2 = n3 = 0, and 1/1 = ° in (3.1): 

u = e- vl2a,. (3.3 ) 

Thus u must be orthogonal to the surfaces t = const for colli­
sion-free gases with invariant distribution functions. The 
most general invariant distribution (2.8) is an even function 
of p2 and p3, but not of pi in general. For this distribution, 
only n2 and n3 are forced to be zero so that u may be tilted. It 
is precisely the collision-free behavior of the gas that forces u 
to be orthogonal. Then the kinematic quantities [given by 
P(2.9)] take the same form as for a perfect fluid6

: 

u=v'e-A/2ar> (}=u=OJ=O. (3.4) 

B. Dynamics: The self-gravitating gas 

In the orthonormal tetrad (2.4), the energy-momen­
tum tensor P(2.6) for the gas distribution (2.7) is 

T ab = J papbC~)F[eVI2pO,r(p2)2+ (p3)2)]dp i23, 

(3.5) 

and since Fin (3.5) is even inpl, p2, andp 3, and symmetric in 
p2 and p3, it follows that 

Tab = Tab(r) = diag(Too,Tll,T22,T23), with T22 = T33. 
(3.6) 

The form (3.6) of the energy-momentum tensor is the same 
as that of the Einstein tensor (2.5), and is thus consistent 
with the Einstein field equations Gab = Tab, which therefore 
impose no additional restrictions on the functional form ofF 
in (3.5). In fact the three field equations given by (2.5) and 
(3.6) contain only two independent equations by virtue of 
the conservation equations T ab

b = 0, which hold identically 
as a consequence of Liouville's ~quation. 4 Thus any choice of 
Fin (2.7) and (3.5), which already satisfies Liouville's 
theorem (Theorem 2.1), gives a solution of the field equa­
tions. Explicitly, given a choice of Fofthe form (2.7), the 
components Tab are determined as functions of r and v via 
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(3.5). Choosing GOo = Too and G 11 = T 11 as the indepen­
dent field equations, we therefore obtain a coupled first-or­
der system for v and A, which may in principle be solved to 
determine the metric (2.1). Clearly, for a physical solution, 
the choice of F must be non-negative, suitably smooth, and 
suitably bounded on the mass shell. 

Theorem 3.1: The invariant distribution function (2.7) 
is a solution of the Einstein-Liouville equations in the static 
space-times (2.1), where F is any physical function. 

The invariance of the distribution function implies in­
variance of u, and of the energy-momentum tensor T by 
P (2.16). Thus the dynamic quantities of the gas, given by 
P (2.10), are invariant. Furthermore, u is orthogonal, so that 
the heat flow is zero, by (3.6). Thus 

j.t=j.t(r), p=p(r), qi=O, tfj =..j3S(r)(cicj -hij/3), 
(3.7) 

where c = e - vI2 a, and S is the magnitude of the stress 
(2S 2 = 1Tijtfj ). (Note that it is the collision-free behavior of 
the gas that forces the heat flow to vanish.) The invariant 
distribution functions are Einstein-Liouville solutions with­
out expansion, shear, rotation, or heat flow. However, there 
is an anisotropic stress: the pressure in the radial direction 
differs in general from the pressure in the orthogonal two­
plane. This possibility, which is ruled out in the usual perfect 
fluid models, is ofimportance in astrophysics. For example, 
in the study of neutron stars, energy-momentum tensors of 
the form given by (3.7) have been constructed by mixing 
two perfect fluids or introducing external fields.9 

In terms of the components of Tab: fl = TOO, 

P = (T l1 + 2T22)/3, S = (T l1 
- T22)/..j3. We can sim­

plify the triple integrals involved by introducing new coordi­
nates on the mass shell. Following Fackerell l and Ray,2 we 
define 

E = ev/2po, J2 = r( (p2)2 + (p3)2), 
(3.8) 

ei<f> = rJ -I( p2 + ip3), 

where E represents the energy (E>mev/2) andJ the angular 
momentum of the particles (J>O), so that the Einstein­
Liouville solution becomes f = F(E,J). Then the mass shell 
volume element 1T m = dp l23/pO becomes 

1Tm = r-2e- vEJ(e- VE 2 - r-2J2 - m2) -1/2 dE AdJ Ad<1>, 

and we obtain, from (3.5), 

X F(E,J) dE dJ, (3.9) 

p= ~ 1Tr-2e- vI2 II J(e- VE2_m2
) 

X (e- VE 2 - r- 2J2 - m2)-1/2F(E,J)dE dJ, (3.10) 

S= ~ 1Tr-2e- v/2 II J(2e- VE 2_3r-2J2_2m2) 

X (e- VE 2 - r- 2J2 - m2) -1/2F(E,J)dE dJ. (3.11) 
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c. Perfect fluid 

The Einstein-Liouville solution provides a kinetic the­
ory basis for perfect fluid models in static space-times. Since 
the heat flow vanishes by the orthogonality of u, to obtain 
perfect fluid behavior4 the stress (3.11) must vanish: 

J J J(2e- VE 2 - 3r-2J2 - 2m2) 

X (e- vE 2 - r- 2J2 - m2)- 1/2F(E,J)dE dJ = O. 
( 3.12) 

If Fis independent of J = r[ (p2)2 + (p3)2] 1/2 and is only a 
function of E = evl2 [ (pl)2 + (p2)2 + (p3)2 + m2p12, 
then f is still a function of pi, p2, and p3, and will be physical 
ifit vanishes sufficiently rapidly at infinity on the mass shell. 
This property follows essentially from invariance of f under 
the s~atic Killing vector. (In spatially homogeneous, locally 
rotatlOnally symmetric space-times without static symme­
try, if Fis independent of J, then f depends only onpl, and 
therefore necessarily has unbounded moments.4

) Now 
f = F(E) implies that f is isotropicinpl,p2, andp3, so that 
TI.I = T22 = T33 = p<;?S = O. Hence (3.12) is identically 
satIsfied for all r, and the gas behaves like a perfect fluid. 
(Note that isotropy of the distribution function in momen­
tum space always leads to perfect fluid behavior, even if there 
are collisions. 10) 

This result was proved in the case of spherical symmetry 
by Ray2 and, in fact, Fackerell l had earlier established essen­
tially the same result (if f is independent of angular mo­
mentum, then the "pressure matrix" is isotropic). It is not 
clear whether the converse is true: Does (3.12) imply that f 
is isotropic (aF /aJ = 0)1 This seems unlikely, but we have 
been unable to find a nonisotropic f satisfying (3.12). Tre­
ciokas and EllislO give an example of non isotropic f gener­
ating perfect fluid behavior in Robertson-Walker space­
time. The existence of such an f in our case would be 
consistent with the conjecture ofTreciokas and Ellis 10,11 that 
perfect fluid behavior is possible only if the shear u vanishes 
and there exists an acceleration potential R (in our case 
R = e- v12 ). 

In order to study fl and p in the perfect fluid case, we 
assume aF /aJ = O. Then (3.9) and (3.10) become (since 
F~OasJ~oo) 

fl = 21Te- 2v I E2(E2 - m2ev) 1I2F(E) dE, (3.13) 

p = ~ 1Te- 2v I (E 2 - m2eV )3/2F(E)dE. (3.14) 

These expressions agree in the case of spherical symmetry 
with those given by FackerelP [Eqs. (47) and (48)]. Note 
that (3.13) and (3.14) imply 0<P<fl/3 and p =j.t/3 
<;:}m = 0, which hold in general in kinetic theory. 

By Theorem 3.1, any choice of the functional form 
f = F(E,J) , and in particular any isotropic choice 
f = F(E) (leading to perfect fluid behavior), gives a solu­
tion of the Einstein-Liouville system, in the sense thatfl and 
p are obtained as functions of v from (3.13) and (3.14), and 
then substituted into the field equations Gab = Tab, leading 
to two independent equations in A and v. The isotropic Bel 
distribution 
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(3.15 ) 

has been used in Robertson-Walker space-time by Bel12 and 
Ray and Zimmerman.13 With (3.15) we can integrate 
(3.13) and (3.14) (see Ref. 14) for m>O in terms of the 
Kummer function U: 

(3.16) 

p = "r/2e- 2'VFo exp( - m2e")U(~, - l,m2e"). (3.17) 

It is then possible to construct graphs showing the behavior 
of j.t,p, andp/j.t as functions of e" (compare Ref. 13). What 
would be more useful is to obtain vCr) andA,(r) by substitut­
ing (3.16) and (3.17) into the field equations using (2.5). 
However, the resulting differential equations are extremely 
complex. What we can find is the behavior of j.t and p for 
limiting values of the metric function eV

, using the asympto­
tic forms 14 of U: 

eV
_ ~p-+j.t/3; e"-oo==>p-+ 0, j.t- 0, p/j.t_ 0. 

Hence for the Bel distribution with m > 0, the ultrarelativis­
tic equation of state p = j.t/3 and the dust equation of state 
p = 0, j.t > 0, are obtained as limiting equations of state. 

Instead of assuming a functional form / = F(E) and 
then determining j.t and p as functions of e", we can impose 
conditions onj.t and p and then seek to determine F(E). This 
approach was developed by Fackerell,1 and allows one to 
investigate the kinetic theory (collision-free) basis for stan­
dard perfect fluid equations of state, or for special behavior 
of j.t(r) (e.g., j.t = const.). Explicitly, we can either (a) as­
sume an equation of state p = p( j.t), or (b) assume a form 
for j.t (r). Then the momentum conservation equation 

(j.t+p)v'+2p'=0 (3.18) 

may be integrated, giving j.t = M(v) in case (a), and 
p = P( r, v) in case (b). Thus in both cases, j.t and p are deter­
mined as functions of r and v, which may be substituted in 
the field equations to determinev(r) and A, (r). However the 
resulting solution may be nonphysical (from a collision-free 
kinetic theory standpoint) if the distribution function is 
forced to be nonphysical by the conditions imposed onj.t and 
p. These conditions reduce, by (3.13), (3.14), and (3.18), to 
an integral equation in F(E). This equation will not in gen­
eral have a unique physical solution F(E). If j.t and p are 
determined, then the average dynamical behavior of the gas 
is determined, but there may be no isotropic physical distri­
bution that generates this behavior, or there may be many 
different isotropic physical distributions that generate the 
same average behavior. In the spherically symmetric case, 
Fackerell l shows that the Schwarzschild interior solution 
( j.t = j.to > ° for r < r 0' j.t = ° for r> r 0) capnot be generated 
by a physical F(E), while the polytropic equation of state 
(p = Kj.t(n+ I)ln for r<ro,p = ° =j.t for r>ro) can be gen­
erated by a physical F(E), which he is able to determine. 

The r-Iaw equation of state 

p = (y - 1 )It, for all r, (3.19) 

is usually assumed in the standard perfect fluid models, and 
is used by CoIIins3 in his analysis of the static space-time 
(2.1). Kinetic theory imposes the restriction l<r<~ in 
(3.19). Howevery= 1 is ruled out by (3.4) ifFis a smooth 
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isotropic non-negative function (and in any case, the field 
equations show that p = ~ = 0). For r =~, we have a 
perfect fluid photon gas, and then (3.18), (3.14) imply 

100 

E 3 F(E)dE = c, 3p = j.t = 2trce - 2", (3.20) 

where c is a positive constant. The integral equation for F(E) 
in (3.20) has many different physical solutions for a given c; 
for example, 

F(E;a) = 4ac(E4 + 0)-2, 0>0, (3.21) 

is an infinite family of isotropic physical distributions gener­
ating the same dynamical behavior. For 1 <r<~, (3.18) and 
(3.19) imply 

p=!trm6ce(6-2)", c>O, 6= (3r-4)/2(r-1)<0, 
(3.22a) 

and then (3.14) gives the integral equation 

f'" w- 1/2 (W - z)3/2F(w)dw = cz6, (3.22b) 

where w = E2, Z = m2ev
• By inspection (3.22b) has a solu­

tion of form F - wb , and we obtain 14 

F(E) =~1T-1/2cr[(2r-l)/2(y-l)]E2Y/(l-y) 

Xr[(4-3y)/2(y-1)]-'. (3.23) 

Since r/( 1 - r) < - 4 and E;;.me,,/2 > 0, (3.23) gives a 
physical distribution for each r, which generates the r-Iaw 
equation of state. [Solutions v (r), A, (r) of the field equations 
are given by Collins.3

] 

Theorem 3.2: The distribution functions (3.21) and 
(3.23) are physical Einstein-Liouville solutions in the static 
space-times (2.1) that generate a perfect fluid with 
p = (y - 1)j.t, 1 < y<~. 

IV. CHARGED PARTICLES 

We now consider whether the static space-times can ad­
mit a self-gravitating gas of particles with charge E, which 
themselves generate the electromagnetic field. Ray2 shows 
that 

(4.1 ) 

are "charged" constants of the motion for the charged Liou­
ville equation 

- ( . a) L/== L + Ep'FQj - / = 0, 
apQ 

(4.2) 

provided the four-potential A (F = - 2 dA) is G 4 invar­
iant::::::}A must be of the formA = a(r)at + p(r)a" leading 
to the charged constants of motion 

YI =YI' for 1= 1,2,3, Y4= -e"(pt+ Ea ), (4.3) 

and the electromagnetic field tensor 

F = 2(aeV
)' dt 1\ dr, (4.4) 

which has zero magnetic field and radial electric field. The 
most general G4-invariant distribution for a charged gas is 
still (2.8), and for this / the general solution of (4.2) is 

/ = F [e"( pt + Ea),,A( p9)2 + l:2( p~)2)} 

=F[e,,/2(pO + EeVI2a),r(p2)2 + (p3)2)] , (4.5) 
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which by (4.3) is precisely the solution of the charged Ehlers 
equation. [Assuming that f = F( y/) and X/ f = 0, for all 
I, and using the charged Liouville operator r, we obtain the 
Ehlers equation P(2.19) withy! replaced by y/.] Thus the 
assumption2 that f be based on the charged Killing vector 
constants of motion is redundant, as in the uncharged case 
(Theorem 2.1). 

We must still show that (4.5) is consistent with Max­
well's equations FijJ = l [The remaining Maxwell equa­
tions dF= 0 are satisfied by construction: F= - 2dA.] 
Now the charged Liouville solution (4.5) has the same sym­
metries in momentum space as the uncharged (2.7). Thus 
the arguments of Sec. III A remain valid, and the kinetic 
average four-velocity remains orthogonal, so that the cur­
rent/ = €ni = €Nui is orthogonal: 

j = €Ne- v/2 at. (4.6) 

Maxwell's equations/ = FijJ' using (4.4), give 

j = _ r- 2e- (V+A)/2[r2(aev)'e- (v+A)/2]'a
t

• (4.7) 

Comparing (4.6) and (4.7) we see that € may indeed be 
nonzero; the static space-times (2.1) can admit an invariant 
Maxwell-Liouville solution. [This is not the case in locally 
rotationally symmetric spatially homogeneous space-times, 
except those of Bianchi type V (see Ref. 4). ] 

Ray2 established this result in the case of spherical sym­
metry, although he did not give the consistency condition for 
the existence of the solutions that is contained in (4.6) and 
(4.7): 

f F [ev/2 ( pO + a€ev/2),r2( (p2)2 + (p3)2)]dp I23 

= _ €-I(r- 2e-A.l2) [r(a€V)'e- (v+A)/2]', (4.8) 

where we have used (3.2) (N = nO). Thus (4.4) and (4.5) 
are a Maxwell-Liouville solution provided a(r) satisfies 
( 4. 8). We show that this solution also satisfies the Einstein 
field equations. By (4.4) the tetrad components of the elec­
tromagnetic energy-momentum tensor 

Tab = FacF b
c - Ft'bFcdFcd 14, 

are diagonal, with 1'22 = 1'33, and Tab = Tab (r), which 
shows that the field equations Gab = Tab + Tab impose no 
restrictions on the form of the electromagnetic field (4.4). 
The conservation equations (T ij + l' ij) J = 0, which ensure 
consistency of the Einstein-Maxwell-Liouville system, fol­
low from the Liouville equation r f = 0 and the identity 
Tij;} = Fk]k. Hence, by an argument similar to that for 
Theorem 3.1, any distribution function of the form ( 4. 5) is a 
solution to the Einstein-Maxwell-Liouville system, pro­
vided a (r) satisfies (4.8). 

Theorem 4.1: The invariant distribution function (4.5) 
is a solution of the Einstein-Maxwell-Liouville equations in 
the static space-times (2.1), where F is an arbitrary physical 
function, and a satisfies (4.8). 

v. NONSTATIC DISTRIBUTION FUNCTIONS 

We have seen how the distribution function invariant 
under the full G4 of motions (2.2) and satisfying Liouville's 
equation leads to an orthogonal kinematic average four-ve-
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locity. Consequently the kinematic quantities of the gas have 
the same form as for the standard perfect fluid model, and 
the heat flow vanishes. If we drop the assumption of G4 in­
variance, we will obtain a tilted u, and hence in general a 
nonzero expansion, shear, rotation, and heat flow. However, 
without G4 invariance it is difficult to find a physical Liou­
ville solution [besides the obvious Killing vector solution: 
f = F(y/), aF laY4#0], and even more difficult to find 
noninvariant Einstein-Liouville solutions. We tackle the 
first problem in this section; the second problem is taken up 
elsewhere.5 

In fact, we can find the general Liouville solution as 
follows. By (2.6), the general solution will be a function of 
six functionally independent constants of the motion (char­
acteristics). The four Killing vectors (2.2) provide four in­
dependent (static) characteristics: E = - Y 4' J 2 = yi 
+ y~ + ky~,Jz =Y3' andJx =Y2 (orJy =YI). The remain­
ing characteristic equations can be taken as dt Ipt = drip' 
= dO Ip 8, and sincept = e-vE, these can be integrated if we 

can expressp' as P(r,y/) and p8 as Q(r,O,y/). By (2.1), 
(2.4), and (3.8),p' = ± e- Al2 [e- vE 2 _ r-2J2 - m2 Jl12, 
and p8= ±r-2[P-J;/l?(O)]1/2, sincept,6 =Jz. Thus 
dt Ipt = drip' can be integrated along the phase flow (E,J 
const) to give the time-<iependent characteristic 

C = t - sgn( p')E f e(A - 2v)/2 

X [e- vE 2 - r- 2J2 - m 2] -1/2 dr, (5.1) 

while drip' = dO Ip 8 can be integratedl4 to give the static 
characteristic 

D =sgn(p8)J- I h(O) -sgn(p') f r-2e" 12 

X [e- vE 2 - r-2J2 - m2] -1/2 dr, (5.2a) 

where 

h(O) =([02-J;IPr/2 , 

- arcsin [ (l-J;IJ 2)-1/2 cos 0], 

arcosh[ (1 + J;/J 2) -1/2 cosh 0 ]), 

for k = (0,1, - 1). (5.2b) 

Clearly (5.1) and (5.2) are independent ofthe Killing vec­
tor characteristics. Hence we have found the general solu­
tion of (2.6): 

f(xi,pa) = F(E, Jx,Jy,Jz,C,D). (5.3) 

Theorem 5.1: The general solution of the Liouville equa­
tion in the static space-times (2.1) is (5.3), where F is an 
arbitrary physical function. 

The non-Killing vector characteristics (5.1) and (5.2) 
depend on terms quadratic in the momentum components, 
and can be related to rank 2 Killing tensors6 in special geo­
metries. For example, in Minkowski space-time, (5.1) gives 

C= (E 2 - m 2 )-IKij pp), Kii = 2: sa (i1a)!' 
a 

where Sa are the spatial translations and la the Lorentz 
boosts, so that C is generated by a reducible Killing tensor. 
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(D has a similar interpretation.) In the Kimura space-time 
of case IIc (Theorem 6.18 of Ref. 8), k = 1, eV = a-ir, tI 
= (ar)-2, wherea>O, and (5.1) gives 

Kij = tr4diag(a-I,O, - 1, -1;2) + a- 2r8 t(i8j), 
(5.4 ) 

with ~ = sin O. Thus Cis generated by one of the two irredu­
cible Killing tensors found by Kimura. [Note the incorrect 
factor ~ in Ktf as given by Kimura's equation (6.34).] The 
static characteristic D must be related to the static irreduci­
ble Killing tensors found by Hauser and Malhiot 7 in certain 
k = 1 static space-times. In principle, C and D can be used to 
find irreducible Killing tensors, if they exist, for static space­
times. 

It is clear from P(2.5), (2.2), and (5.1) and (5.2), that 
the general Liouville solution (5.3) has a kinematic average 
four-velocity u, which at each point may tilt in any spatial 
direction, with a hyperbolic tilt angle that may be time de­
pendent and anisotropic: 

U = e - v/2 cosh t/J(xi)at + sinh t/J(xi)c, c·at = 0, (:.(: = 1, 
(5.5) 

where t/J and c are determined by integrating (5.3) over the 
mass shell. [Note that the Killing vector solution 
f = F(E, Jx,Jy,Jz) hasat/J/at = 0.] From (5.5) it follows 
that the general Liouville solution represents a test gas in 
static space-time with nonstatic and anisotropic expansion, 
shear, rotation, and acceleration. This solution could be ap­
plicable, for example, in the study of noninteracting radi­
ation in astrophysics, since (5.3) (with k = 1) describes the 
most general possible collision-free behavior in static spheri­
cally symmetric space-time. 

By (2.6), it follows that the completely general Liou­
ville solution (5.3) may have a nondiagonal, nonstatic, and 
anisotropic energy-momentum tensor Tab. Thus it is ex­
tremely unlikely that any nondegenerate choice ofF in (5.3) 
could be found to bring Tab into the form (3.6) and hence to 
satisfy Einstein's field equations. [Even the general Killing 
vector solution f = F(E, Jx , Jy , Jz) (=XJT ab fat = 0) is ex­
tremely unlikely to provide a noninvariant Einstein solu­
tion.] However, we can find nonstatic solutions with G3 in­
variance (i.e., with spherical, planar, or hyperbolic 
symmetry) that lead to physical distribution solutions of the 
Einstein-Liouville equations. (This is analogous to the an­
isotropic but spatially homogeneous solutions found by Ellis 
et alY in Robertson-Walker space-time.) By (5.1), 
C = C(t,r,pi,( p2)2 + (p3)2) is the (physical) nonstatic G3-
invariant characteristic, leading to radially tilted u with iso­
tropic tilt angle in (5.5): 
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f = F( C)~u = e - v/2 cosh t/J( t,r )at 

+ e-..tI2 sinh t/J(t,r)a,. (5.6) 

Hence this distribution has time-dependent, isotropic kine­
matic, and dynamic behavior: 

0= O(t,r), ii = a (t,r)c i
, 

Uij =,j3u(t,r)(cicj -hij/3), (J)ij =0, 

'" = ",(t,r), p = p(t,r), qi = Q(t,r)ci
, 

11"ij = ,j3S(t,r)(ci cj - hij/3). 

(5.7) 

(5.8) 

It can be showns that, under reasonable restrictions on the 
function F(C), the dynamic quantities (5.8) [measured by 
the tilted observer (5.6)] lead to orthonormal components 
Tab (measured by an orthogonal observer) of the form 
(3.6). Thus f = F( C) gives a nonstatic Einstein-Liouville 
solution in static space-time. Note how we require the gen­
eral solution of Liouville's equation in order to find a nonsta­
tic Einstein-Liouville solution: the Killing vector Liouville 
solution is always static. 
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An alternate treatment of the results of paper I is given. As in that paper, the Unruh boundary 
condition is formulated, the Unruh vacuum is defined as a state satisfying this boundary 
condition, and the thermal character of the state is exhibited. The present work differs in that 
it uses the double-wedge region of the Kruskal manifold and defines and uses a precise notion 
of distinguished modes. 

I. INTRODUCTION 

In a recent paper Dimock and Kayl have given a treat­
ment of the scattering theory for a scalar quantum field 
propagating on an external black-hole background. Using 
these results it was possible to define and characterize some 
of the standard states for the theory. These are ( 1) the Boul­
ware vacuum or ground state, (2) the Hartle-Hawking 
vacuum or thermal state with T = 1!81TM, and (3) the Un­
ruh vacuum, which represents the radiation of a black body 
at T = 1!81TM. 

The Hawking effect can be formulated as the hypothesis 
that the Unruh vacuum is the natural state on the eternal 
black hole to mock-up the in-vacuum state for the collapsing 
black hole. The argument for this has two parts. In the first 
part, only heuristic at present, one argues that to mock-up 
the collapse situation one should select a state that satisfies a 
certain boundary condition on the past horizon and at past 
infinity-the Unruh boundary condition. In the second step, 
treated in Ref. 1 on the Schwarzschild manifold, one defines 
a state satisfying this boundary condition, and shows that it 
is the Unruh vacuum. 

In the present paper we give an alternate treatment of 
the second step, which uses more of the Kruskal manifold, 
precisely the exterior region and its reflection through the 
origin-the double wedge. We also introduce and use a pre­
cise concept of "distinguished modes" in the formulation of 
our results. The treatment is close to that of Unruh's original 
paper.2 (See also Israel.3

) 

This paper can be read independently of Ref. 1. How­
ever, the latter contains more details about the formulation 
and interpretation of the problem, and also has a much more 
complete list of references. There are some differences in 
notation between the two papers. 

II. CLASSICAL RESULTS 
A. Notation 

We consider a massless scalar field on the Schwarz­
schild manifold. (With modifications as in Ref. 1 the mas­
sive case could also be treated.) The manifold is lR X JI, 

a) This paper appeared as a preprint under the title "Scattering for scalar 
quantum fields on black hole metrics. II." 

where vii = lRXS 2
, and the metric is such that the wave 

equation has the form 

d~ +B2j=O, 
dt 

B2=~+(1_~(2M _~). 
ar2 7; r3 r2 

* 
Here r = r(r *) is defined by r * = r + 2M log(rl2M - 1) 
and I1s is the Laplacian on S2. Introducingp = dlldt this 
can also be written as a first-order system for F = (J,p): 

dF = _ HF. H = ( 0 - 1) 
dt ' \02 0 . 

One can show that B 2 is positive and essentially self­
adjoint on CO'(vII) CL2 (vII,dr* dws ) (dws =volumeele­
ment on S2). Then H is a skew-adjoint operator on the Hil­
bert space 

d = [D(B)] + L 2(vII) 

with 

D(H) = ([D(B2) ]n[D(B)]) (BD(B). 

Here [D(B)] is the completion of D(B) CL2(vII) in the 
norm liB I II. (If B is realized as multiplication by a function 
!3(q) on some L 2 (Q,dq) by the spectral theorem, then 
[D(B)] is all measurable functions t/J on Q so fl!3(q) 12 
X It/J(q) 12 dq < 00. We have D(B) = L 2n[D(B)].) We now 
define the unitary e - HI and F t = e - HIFo is the solution of 
the wave equation with data Fo. 

For future reference we note that 

( 
0 B-2

) 
H- 1 = -1 0 onD(B) (BD(B- I

), 

H-2 = (_:2 _~ -2) 
onD(B)nD(B -I) (BD(B -2). 

Since D(H- 1 )CL2(vII) (BL2(JI) we may also define on 
D(H -I) XD(H -I) the symplectic form 

u(FI ,F2) = f (II P2 - pd2)dr * dws' 

which is invariant under time evolution. 
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There are also asymptotic operators. For the Minkow­
slOan region (r. -00) we have 

2 _a 2 As (0 
B 0 = -a 2 - --::2" ' Ho = B 2 

r. r. 0 

-1) o . 

Then B ~ is pOSitive self-adjoint on Lz(Jt+), 
Jt+ = R+ XS, and Ho is skew-adjoint on 

.J2/ 0 = [D(Bo)] EB L z 

(with suitable domains). For the horizon (r.- - 00) we 
have 

-1) o . 2 _a 2 (0 
BI =--, H 1 = 2 

ar2 BI • 
Then B ~ is positive self-adjoint on L2 (Jt) and HI is skew-
adjoint on 

.J2/ 1= [D(B1 )] EBL2 

(with suitable domains). 
ThespaceL2(Jt) = L2 CRXS2, dr. d(j)s) canbeiden­

tified withLzflR,L2 (S2»), whereL2(S2) = L 2 (S2,d(j)s)' On 
this space or on Y'{R, L2 (S2») one can define a Fourier 
transform 

j(k) = (217")-1/2 f exp( -ikr.)/(r.)dr •. 

Then B I =(_a 2Iar;)I12 is multiplication by Ikl and 
[D(B I )] = {leY': Ik IjeLz}. 

The Hilbert space .J2/ I splits to .J2/ I =.J2/ L EB .J2/ R' where 

(alar.: [D(B I )]-L2(Jt) since it is multiplication by ik 
under the Fourier transform). These are data for left and 
right moving solutions under e - HIt. 

The scattering theory for dF Idf = - HF was devel­
oped jointly by the authors and appears in Refs. 1,4, and 5. 
The fundamental result is that there exist wave operators 
Oo± : .J2/ 0-.J2/ and ot : .J2/ 1-.J2/ defined on dense domains 
goxgoC.J2/o and g lXg I C.J2/I' by 

Oo± F = lim eHtJoe - HotF, 
t_± 00 

Ol± F = lim eHtJle - HltF, 
t_± 00 

where Jo: .J2/ 0-.J2/ and J I: .J2/ 1-.J2/ are certain identification 
operators between these Hilbert spaces. Then Orr is an iso­
metry and Ol± is a partial isometry with initial subspace 
.J2/ L IR' Elements of .J2/0' ± =Ran Oo± are data for solutions 
which are free as f- ± 00 while elements of .J2/ I, ± 
=Ran ot are data for solutions which go to the horizon as 
f_ ± 00. We also have asymptotic completeness: 

.J2/0' ± EB .J2/ld = .J2/. 

Theorem 11.1: Let FleD(H II )n.J2/ L IR and F = Ol± FI 
eD(H -I )n.J2/ I, ±. Then the first components of e - HtF and 
e - HltFI determine continuous functions I( f,r. ), iJ (f,r. ) 
from H2 to L2 (S2) which satisfy 
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lim {sup 1 l(t,r. ) - II {t,r. ) I} , 
t __ ± 00 '. 

where 1 ·1 is the norm in L 2(S2). 

The limit holds in a mean sense just by the definition of 
the wave operators. The theorem asserts that the limit is 
uniform in r •. The proof is given in Appendix A. 

B. The Kruskal manifold 

The Schwarzschild manifold extends to the Kruskal 
manifold. The Kruskal manifold is {( r ,x)eR2

: 

r 2 _ X 2 < I} X S 2 together with a metric such that the wave 
equation takes the form 

(~ _ ~ + 32M3r-Ie-,/2M (2M _ ~)) ¢ = 0 
ar2 ax 2 r3 r2 ' 

(1) 

where r is defined by T2 - X 2 = e,I2M( 1 - rl2M). We di­
vide the manifold into four regions: 

region I: 

region II: 

region III: 

region IV: 

X>ITI, 
T>IXI, 
-X>ITI, 

-T>IXI· 
Then region I is isometric with the Schwarzschild manifold 
under the change of variables 

T= e,·/4M sinh(t 14M), X = e,·/4M cosh(t 14M), 

and is identified with the exterior of the black hole. Region 
III is also isometric, but now we choose 

T= - e,·/4M sinh(t 14M), 

X = - e,·/4M cosh(t 14M), 

so that f is negative timelike in this region if T is positive 
timelike. 

Although one can solve the Kruskal wave equation glo­
bally, for our purposes it is convenient to only consider re­
gions I and III where there is a timelike symmetry. Then it 
suffices to double up the constructions for the Schwarzschild 
manifold. 

Thus we define 

.gf = .J2/ I EB .J2/ III , 

where .J2/ I' .J2/ IU are copies of .J2/ and 

I1=HEBH. 

Then e - 8t generates solutions of the wave equation in I and 
III. It is a twist which goes forward in I and backward in III. 
Similarly we double .J2/ I' HI' etc. to obtain .gf I' Ill' etc. An 
invariant symplectic form which respects the time orienta­
tion is 

fL=UEB(-U) . 

Now define 

u= (T-X)/2, V= (T+X)/2. 

The past horizon is the V = 0 axis and the future horizon is 
the U = 0 axis. In spite of our restriction to regions I and III, 
the horizons are accessible as boundary values for our solu­
tions. The following result for region I is typical. There is a 
similar result for region III. 

Theorem 11.2: Let FleD(H 1- I )n.J2/ R and F = 0 1- FI 
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ED(H -')n.sa""-, Then the first components of e -HtF and 
e - HltF" determine continuous functions t/J( U, V), t/J, (U, V) 
from V> 0, U < ° (region I) to L2(S2) such that 

lim It/J(U,V) -t/J,(U,V)I =0. 
v"o 
Proof' The coordinates U, Vare related to r. ,t by 

t(U,V) = 2M (log V -loge - U»), 

r. (U,V) = 2M (log V + loge - U»). 

LetJ,f, be as in Theorem ILL Then 

It/J(U,V) -t/J,(U,V)I 

=If(t(U,V),r. (U,V») -f,(t(U,V),r. (U,V»)I 

<sup If(t(U,V),r.) -fdt(U,V),r.)I~ as V'>.O. r. 
The last step follows by Theorem 11.1 since t( U, V)~ - 00 

as V'>.O. 

C. Complex solutions 

Let .sa"c be the complexification of .sa". We define sub­
spaces 

.sa"t_pos/t_neg={F= (J,p)E.sa"c: p = +iBf}. 

[Note that B is unitary from [D(B)] to L 2(vN').] These 
subspaces are orthogonal and they span .sa"c since we may 
write 

(J,p) = !(f + iB -'p, - iBf + p) 

+ !(f - iB -'p,iBf + p). 

Thus we have 

.sa"C = .sa" t-pos E!) .sa" t-neg . (2) 

Now ( - iH) is a self-adjoint operator onD(H), and we 
have - iH = BE!)B in .sa"t_pos and - iH = - (BE!)B) in 
.sa" t-neg' Thus .sa" t-pos and .sa" t-neg are the positive and negative 
spectral subspaces for - iH. Note also that on D(H), 

IHI = l-iHI =BE!)B. (3) 

By the spectral theorem we also have the characteriza­
tion that .sa" t-pos is the subspace of all F such that 

exp( - tH)F= exp( - i( - iH)t)F 

is bounded and analytic in the lower half-plane in t. One uses 
to terminology "t-positive frequency." 

We may similarly split.sa"? = .sa" ',t-pos E!) .sa" ',t-neg into the 
positive and negative subspaces for - iH,. 

LemmaIL3: (a) Of': .sa"',t_pos~.sa"t_pos (also for t-neg). 
(b) For any measurable function J, O,± maps 

D(f( -iH,»)toD(f( -iH»)andonD(f( -iH,») 

f( - iH)Of = O,± f( - iH,). 

Proof: (a) Use the intertwining relation e-HtO,± 
= O,± e - Hlton .sa"c, IfFE.sa" ',t-pos' thene - HtO I± F is bound­

ed and analytic in the lower half-plane and so Ol± F E.sa" t-pos 
which gives (a). 

(b) Ol± is unitary from (.sa" L/R )c to (.sa"I, ± )c so e - HIt 

on the former domain is unitarily equivalent to e - Ht on the 
latter. These unitary groups have self-adjoint generators 
- iH" - iH and so the statement of (b) in (.sa" L/R)C fol-
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lows. But the statement is trivial on the complement 
(.sa" R/L)C and so holds generally. Q.E.D. 

For the Kruskal manifold we split .p{c = .sa"~ E!) .sa"~1 
into positive and negative spectral subspaces for 
- iH + = ( - iH) E!) iH, which generates forward time evo­

lution. We have 

,gfC = .p{ t-pos E!) .p{ t-neg , 

where 

.p{ t-pos = .sa" I,t-pos E!) .sa" IlI,t-neg , 

,gf t-neg = .sa" I,t-neg E!) .sa" IlI,t-pos . 

Now let GED(H -') C.p{c and let t/J( U, V) be the solu­
tion exp ( - tH) G expressed in Kruskal U, V coordinates for 
U<O, V>O and for U>O, V<O (regions I and III). We 
define a subspace .p{ U-pos of ,gfc (not necessarily closed) as 
those G such that t/J ( U, V) has a boundary value t/J ( U,O) on 
V = ° [in thesenseofL2 (S 2) convergence] which is positive 
frequency in U. Thus 

.p{ U-pos = {GED(H -I) C .p{c: t/J ( U,O) is bounded 

and analytic in 1m U <a}. 

We similarly define a subspace ,gf ',u-pos of D(B 1- I) C.p{? 
using the dynamics exp( - tHI)G instead of exp( - tH)G. 

The two notions of positive frequency (t-pos, U-pos) 
will be connected by a densely defined operator .5t' on 
.p{ = .p{ I E!) .sa" III given by 

.5t' = (COSh t/J( IH I) 
sinht/J(IHI) 

where 

sinht/J(IHI») 
cosht/J(IHI) , 

cosh t/J(k) = (1 - e - 81TMk) -1/2, 

sinht/J(k) =e-41TMk(1_e-81TMk)-1/2, 

(4) 

To keep track of domains for .5t' we consider 
IH 1-3/2 =B -312 E!)B -3/2 with domain 

D( IH 1-3/2 ) = D(B)nD(B -1/2) E!)D(B -3/2), 

We have D(H -2) CDC IH 1-3/2 ) CD(H -'). 
Lemma /14: (a) .5t' maps D(li -2)~D( IIi 1-3/2 ) and 

D( IHI-3/2)~D(H -I). 
(b) .5t' is symplectic, i.e., .5t' preserves fl.. 
Proof: Both cosh t/J (k) and sinh t/J (k) are bounded as 

k~- 00 and are C'(k-'/2) as k'>.O. Hence cosht/J(IHI) 
and sinh t/J( IH I) map D(H -2) to D( IH 1-3/2 ) and 
D(IHI- 3/2 ) toD(H- I). Part (a) follows and part (b) is 
immediate from cosh2 t/J - sinh2 t/J = 1. Q.E.D. 

We similarly define .5t'1 in .p{ I = .sa" 1,1 E!) .sa" I ,Ill with 
IH,I and domains D(HI-2),D(IH,I-3/2). We define {U: 
.p{]~,gf by 

O]± = Of' E!)O]±. 

By Lemma 1I.3(b) we have on D( IH,I- 3/2 ) 

.5t'O]± = Of'.2" I' (5) 

Thus .2" preserves .p{1. ± ==Ran ill±. We extend .5t' to be 
complex linear on .p{c. 

Theorem 11.5: Let GED(11l1-3/2 )n(.p{I,-)c so that 
.5t'GED(H- I)n(.p{I,-)c. Then GE.p{t_pos implies 

.5t' GE.p{ U-pos' 
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Proof; We have G=O,-G, with GleD(IHII-3/2) 
n(.£R)c, Then .2"'G=O,- .2"'.G. by (5). Since 
exp ( -11.1).2'" G has the same boundary values as 
exp( -B.t).2'" IG, by Theorem 11.2 it is sufficient to prove 
the following theorem. 

Theorem 11.5': Let GeD(llld-3/2 )n(.£R)C so that 
.2"'.GeD(H,-I)n(.£R)c, Then GE'£I,t_pos implies 

.2'" I GE.£ ',U-pos . 
First consider G=(F,O) with FeD(IHII-3/2)nd~ 

nd I,t-pos' We then have F = (f, -: af far. ) = (f, - iBI /) 
with feD(BI)nD(B 1-

112). Let f be the L 2(S2) valued 
Fourier transform off Since afar.-ik and iBI_ilk I we 
must have j(k) = 0, for k < O. The domain condition be­
comes 

LOO O+k 2+k- I )lj(k)12dk<oo. (6) 

Now .2"'IG= (cosh¢(JHIJ)F, sinh¢(IHIJ)F), and 
cosh ¢( IHII )(f,p) = (cosh ¢(BI)f,cosh ¢(BI)p), Also 
cosh ¢(BI)f has Fourier transform cosh ¢( Ik J)j(k). We 
have 

exp( - IlI t).2'" IG 

= (e - HIt cosh ¢( IHd )F,e - HIt sinh ¢( IHII )F) 

and e - HIt is a translation by ton (d R ) c. Thus we have the 
L 2 (S2) valued solutions: 

(211') -1/2 100 

ik(r. - t) cosh ¢(k) j(k)dk, region I, 

(7) 
(211') -1/2 LOO ik(r. - t) sinh ¢(k) j(k)dk, region III. 

[The integrands are LI by (6) and cosh ¢(k) = ~ (k -1/2) 
as k~.] In U, V coordinates we have 

(211') -1/2 LOO exp(i4Mk loge - U) )cosh ¢(k)j(k)dk, 

U<O, 

(8) 

(211')- 1/2100 

exp(i4Mklog U)sinh¢(k)j(k)dk, U>O, 

which trivially has the same boundary value as V~. 
Now define log U in the lower half-plane with - 11' 

';;;arg U.;;;O. We then have for U negative 

exp(i4Mk loge - U») = e- 4Mk1T exp(i4Mk log U). 

Since also 

e -4Mk1T cosh ¢(k) = sinh ¢(k), 

we see that (8) is the boundary value as 1m U /' 0 of the 
single analytic function in the lower half-plane 

(211') -1/2 LOO exp(i4Mk log U)sinh ¢(k)j(k)dk. (9) 

This is well defined and bounded in the lower half-plane 
since 

lexp(i4Mk log U) I .;;;exp( 4Mk11') 
and 

I exp(4Mk11') sinh ¢(k) 1= I cosh ¢(k) I 
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and Icosh ¢(k)j(k) I is in L I. Thus we have that 
.2'" lGE~ I,U-pos as required. 

Now suppose G = (0.£) with _FEdl,t_neg' Then 
F= (f, - af far.) = (f,iBI /) and sof(k) = 0, for k>O. 
Proceeding as before we obtain from exp( - H I t).2'" IG: 

(211') -1/2 100 

exp( - i4Mk loge - U»)sinh ¢(k)j( - k)dk, 

U<O, 

(10) 

(211') -1/2 LOO exp( - i4Mk log U)cosh ¢(k)j( - k)dk, 

U>O. 
This is the boundary value as 1m U /' 0 of the function 

(211') -1/2 Loo exp( - i4Mk log U)cosh ¢(k)j( - k)dk, 

(11 ) 
which is bounded and analytic in the lower half-plane. Thus 
.2'" IGE~I,U_pos in this case as well. Q.E.D. 

III. QUANTUM RESULTS 

For the time-zero quantum field on the Schwarzschild 
manifold we take a representation of the CCR over 
(D(H -2),(1). This consists of operators W(F) indexed by 
FeD(H -2) Cd which satisfy 

W(FI ) W(F2) = exp( - i(1(FI,F2)f2)W(FI + F2). 

The time-evolved field operator is then 

Wt(F) = W(eHtF). 

States for the system are states on the C·-algebra generated 
by W(F). The ground state is defined by 

w(W(F») = exp( - !IIKFII2), 

where K: D(H -I )_JY' L 2(vR,C) is defined by 

K(f,p) = 2- 1/2 (B 1/:r + iB -1/2p ) 

and is symplectic from (D(H -I ),(1) to (K,2 Im( . , . »). 
Such a state can be characterized by its distinguished 

modes defined as those FeD(H -2) in the complexification 
d C of d such that K cp = 0, where K C is the complex 
linear extension of K. The interpretation of this is that the 
state lacks field excitations of this type. For this particular K 
the distinguished modes satisfy p = - iBf and so are ele­
ments of dt_pos. For more about distinguished modes see 
Appendix B. 

For the Kruskal manifold (regions I and III) we take a 
representation of the CCR over (D(ll-2)..cz). Thus we have 
operators W( G) indexed by GeD(R -2) e.g{ such that 

W(GI ) W(G2) = exp( - iQ.(GI,G2)f2)W(GI + G2). 

The time-evolved field operator is 

Wt(G) = W(elitG). 

Note that if we restrict to region I, Wt (F)=Wt (F,O) is a 
field operator for the Schwarzschild manifold. A ground 
state on the C --algebra generated by W( G) is defined by 

CIl(!t'"(G») = exp( - !IIKG 11
2

), 

whereK: D(!i-I)-KalKis defined by 

K=KalCK. 
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Here C is complex conjugation and is necessary to make K 
symplectic from (D(ll-'),Qj to (£' al £,,2 Im( . , . »). The 
distinguished modes satisfy KC(G) = 0, where K C 

= K al CKC and they are elements of .gt '-pos' 

The Unruh vacuum will be defined on the same algebra, 
but with different distinguished modes. The choice of distin­
guished modes depends on the following considerations re­
lating the collapsing star to the eternal black hole. 

The exterior of a collapsing star can be represented as a 
portion of regions I and II of the Kruskal manifold that lies 
above a certain forward timelike curve T(A.), X(A.) going 
from I to II and representing the surface of the star. In the 
idealization in which the collapse occurs in the distant past 
this line approaches the V = 0 axis and the exterior corre­
sponds to all of regions I and II. 

For the collapsing star we are interested in the state 
which has no particles in the distant past, the in-vacuum. 
This is the state for which the distinguished modes are t­
positive frequency in the distant past. Now Unruh2 argues 
that in the idealization mentioned above the t-positive fre­
quency modes will have U-positive frequency when they 
emerge from the surface of the star, i.e., at V = O. (This 
statement is susceptible to proof if one takes a model for 
collapse.) The upshot is that we want to define a state which 
has distinguished modes which are U-positive frequency on 
the past horizon V = 0, but still t-positive frequency at past 
infinity. This is the Unruh boundary condition. 

With these remarks as motivation we define the Unruh 
vacuum by 

wu(W(G») = exp( - ~IIKuQ 11
2), 

where Ku: D(1l-2)-+Jf' al Jf' is defined by 

K G = {KG, GE.gt°' - , 
u K1 -IG, GE~I, - • 

Note that K u is symplectic since both K and 1 -I are sym­
plectic, since .gt0' - ;~I, - are symplectic orthogonal, and 
since 1 -I preserves .£1, - . 

The distinguished modes are those GED(lJ. -2) C d C 

such that K ~ (G) = O. The distinguished modes in .gt0' - are 
elements of ~ '-pos' The distinguished modes in .gt I, - are 
those G such that 1-'GED(llll)-3/2) is in .gt,_pos' For 
such G we have G = 1(1- I G) in .gt U-pos by Theorem 
11.5. Thus the Unruh boundary condition is satisfied. 

Now we look at the Unruh vacuum on the exterior field 
W(F) = W(F,O), FED(H -2). 

Proposition IlL 1: 

wu(W(F») = {exp( - !IIKFI12), 
exp( - ~(KF,coth( 4trMB)KF)), 

Proof: For FEdo, - this is trivial, while for FEd l
• - we 

make the calculation 

IIK1 - ' (F,0)112 

= (KF,(cosh2t,6(B) + sinh2t,6(B»)KF) 

= (KF,coth( 41TMB)KF). 

[Note that KFED(B- ' ) and cosht,6(B), sinht,6(B), and 
coth( 41TMB) are defined on this domain.] Q.E.D. 

Now the state on the subalgebra generated by 
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{W(F): FEd l
, - } may be identified as the KMS state for 

T = 1/81TM, for our dynamics. The state is thus thermal on 
modes coming from the star in the past and a ground state for 
modes coming from infinity in the past. In this sense it repre­
sents the radiation of a hot body (T = 1/81TM) in a cold 
universe (T = 0). The characterization of the state in the 
distant future is more complicated, see Ref. 1. 

APPENDIX A: ESTIMATES 

We give the proof of Theorem ILL Using the Fourier 
transform on L2 (vii) = L 2(R,L2 (S 2») one can show that if 
IED(B , ), then/is continuous from R to L 2(S2) and satis­
fies the Sobolev inequality 

I/(r ... )I<C(IIBJII + 11/11), (AI) 

where I . I is the norm in L2 (S 2). Since B i <B 2 on the core 
CO' (vii) we may deduce that D(B) CD(B,) and that for 
IED(B), IIBJII<IIB/II. Thus for IED(B), we also have 
IEC(R,L2(S2») and 

I/(r ... )I<C [IIB/II + 11/11]. (A2) 

If F= (j,p)ED(H -I), then/ED(B),pED(B -I) and 

IIH-IFI12 + IIFII2 = IIfW + liB -lpW + IIBIW + 11P112. 
(A3) 

A similar result holds for H 1- I. 
Combining the above we have the following lemma. 
Lemma A1: Let F= (j,p)ED(H- I), then 

IEC(R.L2(S2») and 

I/(r ... )I<C(IIH - IF II + IIFII)· 

A similar result holds for FED(H 1- I). 
Now define § I CL2 (vII) by 

§I = {!= ~/;gi: j;ECO' (R"{O}), giECOO (S2)}. 

Then § I X § I is dense in d I and the wave operator Or 
exists as a limit on this domain. 

LemmaA2: (§IX§I)ndLiR is a core for HI-I on 
D(H,-')ndLIR' 

Proof: In D(H 1- I )n..w'LIR we have 

F= (j, ± al ), IED(B, ). 
ar ... 

Then (A3) for HI becomes 

IIH I-IF Iii + IIFlli = 2(IIBJI12 + 11/11
2
). 

The result now follows since § I is a core for B ,. Q.E.D. 
Now let F,ED(H 1- 1 )nd LlR and F = Ol± F, 

ED(H -I )nd l , ±. We define 

e-HtF= (J"p,), e-H,tFI = (/I,t>PI,,)· 

By Lemma Al/;.J. •. t determine functions/(t,r ... ),fl(t,r ... ) 
from R2 to L 2(S2). Also by Lemma Al these functions are 
continuous in t uniformly in r... and hence they are contin­
uous on H2. 

Lemma A3 (Theorem II 1): 

lim {sup I l(t,r ... ) - II (t,r ... ) I} = O. 
t-1> ± 00 r. 
Proof: We have the estimates from Lemma Al 
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1/1(t,r.)I..::CIIHI-IFIII I + IIFIIiI 

1/(t,r. )1"::C(IIH-lfil±FIIi + Ilfil±FIII) 

= C(IIH I-IFdll + IIFdll)' 

Here we useH-lfi l± = fil±H I-I. By Lemma A2 we may 
pick FI,jE(~IX~I)n.szlL/R so that IIFl,j -Fdll and 
IIH 1- I (FI,j - F I ) III go to zero as j.-oo. Then with Fj 
= fi l± FI,j' we have, by the above estimates, 

lim {sup I II (t,r. ) - iJ,j (t,r. ) I} = 0, 
}_a;) r. 
lim {sup I l(t,r. ) - ..t; (t,r. ) I} = 0, 

1--00 r. 
and the limits are uniform in t. Thus it suffices to prove fixed 
jthat supl..t; (t,r. ) - iJ,j (t,r. ) 1--0 as t.- ± 00, i.e., that the 
theorem holds for FIE(~ IX~ I)n.szl LIR' 

Now assuming FIE(~IX~I)n.szlL/R we have that 
e - H"FI is in .szI and 

IIB( ft -II,,) II..:: lie - H'fi l± FI - e - H"Fdl, 

which goes to zero as t.- ± 00 [with the restriction to 
(~ I X ~ I )n.szl L /R the identification operator JI is unneces­
sary]. 

We also have thatH 1- IFIE(~ I X~ I)n.szl LIR and that 
e - IB, (H 1- IF) is in .szI and so 

11ft -iJ.,II..::IIH-Ie-H'fil±FI-HI-Ie-H"Fdl 

= lI(e-Htfi l± - e-H,t)H I-IFill, 

which goes to zero as above. The result 
supl/(t,r. ) -II (t,r. ) 1--0 now follows by the inequality 
(A2). 

APPENDIX B: DISTINGUISHED MODES 

Let ~ be a real pre-Hilbert space supplied with a sym­
plectic form u. Let W(F) be a representation of the CCR 
over (~ ,u) consisting of operators W(F) on some complex 
Hilbert space, indexed by FE~ , and satisfying 

W(FI ) W(F2) = exp( - iu(FI,F2)/2)W(FI + F2). 

A state on the C *-algebra generated by W(F) may be de­
fined by a pair (£',K) consisting of a complex Hilbert space 
£' regarded as a real symplectic space with symplectic form 
2 Im( ., . ), and a symplectic operator K: ~.-£', which we 
assume has dense complex-linear range. The state is defined 
by 

(U(W(F») = exp( - !IIKFII2). 

The state (U can be realized on Fock space as follows. Let 
Y be the Fock space over £' with vacuum state fi. For 
1/JEK, let a(t/J), a(t/J)· be creation and annihilation opera­
tors on Y (a antilinear in t/J) and let 

u(~,F) = a (KF) + a(KF)*. 

Then u(~,F) is naturally self-adjoint on Y and W(F) 
= exp(iu( ~,F») gives a representation of the CCR. The 

state {U is realized as {U = (fi, [ . ] fi). 
Let fiJc be the complexification of ~. The definition of 

the field operator can be extended to ~c by linearity and is 
still denoted u( ~,F). We also extend K to ~c and denote it 
K C

• Then we have 
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u(~,F) = a(Ken + a(KcF)*. 

Definition: FE~c is a distinguished mode if 

Kql=O. 

Thus if F is a distinguished mode u(~,F) is a pure creation 
operator and u(~:F> is a pure annihilation operator. The 
identity u(~,F)fi = 0, expresses that fi has no field excita­
tions ofthis type. In some cases u( ~,F) can be interpreted as 
an operator creating a particle, but this needs some assump­
tions on time evolution which we do not make. 

The following result (which we do not use) shows that 
there is a sense in which the distinguished modes determine 
K up to unitary equivalence, and hence (U. 

Proposition B.!: LetKI: ~'-£'I andK2: ~'-£'2 each 
be symplectic with dense complex-linear range and suppose 
K ~ ,K ~ have the same null space. Then there is a unitary U: 
£'1'-£'2 so UKI = K 2• 

Proof Let J I = K 1- liKI and J2 = K 2-liK2 be the asso­
ciated complex structures in the sense of Segal. Then J I = J2 

since F= JIG implies K~(F - iG) = 0, hence 
K~(F-iG)=O, and hence F=J2G. Now define 
U = K2K 1- I from Ran KI to Ran K 2. Then Uis symplectic 
and it is also complex linear since 

KzK 1- Ii = KzllK 1- I = KzlzK 1- I = iKzK II. 

lt follows that U is norm preserving since 

IIUt/J1I 2 = Im(Ut/J,iUt/J) = Im(t/J,it/J) = 1It/J\l2. 

Since U has dense domain and dense range it extends to a 
unitary operator. 
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The time-independent linear transport problem in a purely absorbing (no scattering) random 
medium is considered. A formally exact equation for the ensemble averaged distribution 
function ('11) is derived. Under the assumption of a two-fluid statistical mixture, with the 
transition from one fluid to the other assumed to be determined by a Markov process, an exact 
solution to this equation for ('11) is obtained. In the source-free case, this solution is shown to 
agree with the result obtained by ensemble averaging simple exponential attenuation. Several 
approximations to the exact equation for ('11) are considered, and numerical results given to 
assess the accuracy of these approximations. 

I. INTRODUCTION 

In this paper we consider the problem of describing par­
ticle transport in a statistical (random) medium. Specifical­
ly, we consider time-independent transport in a medium in 
which the only particle-medium interaction is annihilation 
(absorption). Allowing for an external source of particles in 
the medium, we then have the generic linear kinetic (trans­
port) equation along a direction s given by 

d'l1 (s) --+ u(s)'I1(s) = S(s). 
ds 

(1) 

Here s is the spatial variable; '11 (s) is a distribution function 
defined such that the number of particles of speed v between 
sand s + ds is given by v- 1'l1(s)ds; u(s) is the annihilation 
(absorption) cross section, defined such that u(s)ds is the 
probability of absorption for a particle traversing a distance 
ds; and S(s) is the external source strength, defined such that 
S(s)ds is the number of particles introduced into the medi­
um per unit time between sand s + ds. IfEq. (1) is assumed 
to hold for s;;.O, we then have the boundary condition 

'11(0) = '110 , (2) 

where '110 is the prescribed incident distribution at s = O. We 
assume that u and S in Eq. (1) are known only in some 
statistical or probabilistic sense. That is, at each space point s 
there is some time-independent probability that each of these 
two quantities will assume certain values. Accordingly, we 
consider u and S, as well as the distribution function '11, to be 
random variables. Assuming we know the complete statisti­
cal description of u and S, we seek the solution for ('11), the 
ensemble averaged (expected value) of the distribution 
function '11. We emphasize that Eq. (1) is a transport equa­
tion for particle propagation along a particular direction s in 
a three-dimensional setting. That is, our analysis and results 
are applicable to a random, three-dimensional medium. 

There are conceptually two distinct ways to proceed. In 
the first approach, one can immediately write the solution to 
Eqs. (1) and (2) as 

'I1(s) = '110 exp [ - f ds' U(S')] 

+ f ds' s(s')exp[ - f ds" U(SIl)] , (3) 

and then ensemble average the right-hand side (rhs) ofEq. 
(3) to obtain ('I1(s». Alternately, as a second approach one 
could develop, from Eqs. (1) and (2), a transportlike equa­
tion for ('11 (s) ), and then solve this equation to obtain the 
ensemble averaged solution. In this paper, we primarily fo­
cus on the second approach, but we also consider the first 
approach in the source-free (S = 0) case. 

Specifically, in Sec. II we develop the details ofthe sec­
ond approach by using a projection operator technique, the 
method of smoothing as described by Keller1

•
2

•
3 and Frisch,4 

to derive a formally exact equation for ('11 (s». This equa­
tion contains an infinite series, with the nth term in this series 
involving an n-fold integral arising from n applications of the 
inverse transport operator. This multiple integral acts on 
various spatial correlation functions describing the statisti­
cal nature of the medium. For small statistical fluctuations, 
this infinite series can be truncated to a single term to obtain 
the lowest-order (in the smallness parameter describing the 
fluctuations) statistical correction. The integral operator in 
this lowest-order approximation can be localized by invok­
ing a standard Fokker-Planck approximation. 

These formal results are specialized, in Sec. III, to a 
statistical mixture of two immiscible fluids, with u and S at 
any space point each taking one of the two values that are 
associated with each fluid. We show that the assumption of a 
Markov (Poisson) process for the transition from one fluid 
to the other allows an explicit calculation of all of the re­
quired spatial correlations. In addition, under this Marko­
vian model, one can also obtain an analytic expression for 
the probability density distribution function corresponding 
to the optical depth random variable 7", defined as 

7"(s) = f ds' u(s'). (4) 
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This distribution function can be used to ensemble average 
the right-hand side (rhs) of Eq. (3) in the source-free 
(S = 0) case, since in this case Eq. (3) simply becomes 
'I1(s) = '110 exp( -1'). 

In Sec. IV we show that the transportlike equation for 
('11 (s» derived in Sec. II can be solved exactly for the two­
fluid Markovian medium, in the special case of a homogen­
eous (spatially independent statistics for 0' and S) medium. 
We numerically compare this exact solution with the result 
predicted by the small fluctuation equation (that which 
truncates the infinite series to a single term), as well as to the 
Fokker-Planck approximation to this small fluctuation 
equation. We also use the probability density distribution 
function for the optical depth l' obtained in Sec. III to carry 
out the details of ensemble averaging Eq. (3) in the source­
free (S = 0) case. The results of these two approaches to 
obtain ('11 (s) ) in a source-free medium are shown to be iden­
tical. The final section of the paper is devoted to a few con­
cluding remarks. 

As is clear from the above outline, the emphasis in this 
paper is on particle transport in a random medium com­
posed of two immiscible turbulently mixed materials. This 
work was motivated by the need for an accurate transport 
description in the calculation of the performance oflaser- or 
beam-driven fusion pellets. At an interface between two ma­
terials, these pellets are susceptible to Rayleigh-Taylor in­
stabilities which can lead to a two-fluid turbulent mixture 
around the interface. A review of Rayleigh-Taylor instabili­
ties within the context of inertially confined fusion has re­
cently been given by Jacobs.5 We intend to implement our 
formalism in the laser fusion code LASNEX used at the Law­
rence Livermore National Laboratory. Other areas ofappli­
cation also come to mind. In a boiling-water nuclear reactor, 
the water, which acts as both coolant and moderator, is in a 
two-fluid random state (liquid and vapor). A proper treat­
ment of the neutron transport must take the statistical na­
ture of the mixture into account. In shielding calculations 
through concrete, the random nature of the materials (e.g., 
gravel) in the concrete implies a need for a statistical trans­
port treatment to obtain an accurate measure of the shield 
effectiveness. Still another area of application is the calcula­
tion of light transport through a two-component random 
medium, such as sooty air or murky water. In general, there 
seem to be numerous areas of application for a transport 
theory for random media. 

Finally, we note that the equation of radiative transfer 
with certain stochastic coefficients has been studied rather 
extensively with the astrophysical community.6,7 However, 
the emphasis in this work has been on line transport with 
random Doppler shifts of the absorption coefficient due to 
small random velocity fields. The problem we treat, that of 
two turbulently mixed materials, is quite different from this 
astrophysical problem, even though both involve a stochas­
tic linear transport equation. 

II. THE EQUATION FOR (\fI(8» 

We rewrite Eq. (1) as 

L'I1 +M\II = (S) +q, 

2527 J. Math. Phys., Vol. 27, No.1 0, October 1986 

(5) 

where (S ) is the ensemble averaged source, L is the ensemble 
averaged transport operator given by 

d 
L=-+(O'), (6) 

ds 

and q and M are the corresponding fluctuating quantities, 
i.e., 

q=S- (S), M=O'- (0'). (7) 

We now introduce ¢l(s) as the fluctuating portion of'l1(s), 
i.e., 

'11 = ('11) + ¢l. (8) 

We note that q, M, and ¢l all have a zero expected value, i.e., 

(q) = (M) = (¢l) = O. (9) 

Following Keller l
,2,3 and Frisch,4 we use Eq. (8) in Eq. (5) 

and ensemble average to obtain 

L ('11) + (MrfJ) = (S). (10) 

The term (MrfJ) in Eq. (10) represents the statistical correc­
tion to the transport description. To compute this quantity, 
we subtract Eq. (10) from Eq. (5) to obtain 

LrfJ = q - M ('11) + [(MrfJ) - M¢l], (11) 

or 

¢l = L -I(q - M ('11» + (B I - B2)rfJ. (12) 

Here B I is the projection operator defined by 

BlrfJ =L -1(MrfJ) = (L -IMrfJ), (13) 

B2 is the corresponding unprojected operator defined by 

B2¢l = L -IM¢l, (14) 

and the inverse operator L -I is explicitly given by (since rfJ 
vanishes at s = 0) 

L -I¢l(s) = f ds' rfJ(s')exp [ - f dS"(O'(S"»], (15) 

We rewrite Eq. (12) as 

(/-BI +B2)rfJ=L- I(q-M('I1», (16) 

which has the formal Neumann series solution 
00 

rfJ= L (-1)n(B2-BI)nL- I(q-M('I1». (17) 
n=O 

Operating on Eq. (17) with the operator M and ensemble 
averaging gives 

00 A _ 

(M¢l) =L L (_1)n(Tn+2 - Tn+2 ), (18) 
n=O 

where 

Tn+2 = (B2(B2 - BI)nL -Iq), n;;;'O, (19) 

and 

Tn+2 = (B2(B2 -BI)nB2)('I1), n;;;.O. (20) 

Use ofEq. (18) in Eq. (10) gives 

L ('11) +L f (_l)n(Tn+2 - Tn+2) = (S). (21) 
n=O 

Equation (21) is the formally exact transportlike equation 
for ('11), the ensemble averaged distribution function. The 
infinite series in this equation is the statistical correction to 
the transport description. 
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From their definitions according to Eqs. (19) and (20), A _ 

one can easily deduce recurrence relationships for Tn and Tn 
given by 

A n-2 A 

Tn = «L -IM)n-IL -Iq) - I, «L -IM);)Tn_;, 
;=2 

(22) 
n-2 't = «L -IM)n)('I') - I, «L -IM);)Tn_ u 
;=2 

(23) 

These recurrence relationships are initiated by the explicit 
n = 2 expressions 

1'2= (L -IML -Iq), 1'2= (L -IML -IM)('I'). (24) 

From these recurrence relationships one can prove, by in­
duction, that Tn and Tn can be written in explicit form as 

A 

Tn = I,a;«L -IM)!")«L -1M)!") ... «L -IM)PiL -Iq), 
; 

n>2, (25) 

Tn = I,a;«L -IM)PI)«L -IM)P» ... «L -IM)Pi) ('1'), 
; 

n>2. (26) 

The powers Pk can assume any non-negative integer values 
subject to the constraint 

PI + P2 + ... + Pi = m, (27) 

where m = n - 1 for Eq. (25) and m = n for Eq. (26). The 
sum over i in Eqs. (25) and (26) is over all possible combi­
nations for the powers P k, and a i = + 1 for an odd number 
of terms in the product involving ensemble averaged opera­
tors, and a; = - 1 for an even number of terms. As an ex­
plicit example, we have 

1'5 = «L -IM)4L -Iq) _ «L -IM)2)«L -IM)2L -Iq) 

_ «L -IM)3)(L -IML -Iq), (28) 

1'5 = «L -IM)5) ('I') - «L -IM)2)«L -IM)3) ('I') 

(29) 

To proceed, we define the nth-order spatial correlations ac­
cording to 
A 

Nn (SI"",Sn) = (M(si )M(S2) ... M(sn _ I )q(sn»' (30) 

and 

Nn(sl> ... ,sn) = (M(SI)M(S2) ... M(Sn_I)M(sn»' (31) 

and, in analogy to Eq. (4), we define 7" n as the optical depth 
corresponding to a distance sn' i.e., 

('" 
7"" = Jo ds'(7(s'). (32) 

In terms of these definitions, we can write, using Eq. (15) for 
L- I , 

LT" = [ dS I [' dS2 ... ["-2 dS"_1 

xexp[ - «7") - (7""_1»] 

x~a; [NplNp, ... Npi_INpi]' 
I 
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(33) 

Xexp[ - «7") - (7",,-\»] 

XI, a; [NpINp, '" Npi_INpi] ('I'(s" _\», (34) 
i 

A 

where the arguments in the product terms involving the N . - ~ 
and NPk are s,sl>"',s" _ \ in this order. Again, as an explicit 
example we have 

A _ A 

X [N5(s,sI,s2,s3,S4) - N2(s,s\)N3(S2,S3,S4) 
_ A 

- N3 (S,SI,S2)N2 (S3,S4) ], (35) 

LT5 = I dS I I' dS2 I' dS3 I' ds4exp[ - «7") - (7"4»] 

X [N5(s,s\,S2,S3,s4) - N2 (s,s\)N3(S2,S3,s4) 

(36) 

To proceed further, one needs to specify a statistical model A _ 

to compute the spatial correlations N" and N n • We consider 
one such model in the next section. 

To summarize our considerations thus far, Eq. (21) is 
the formally exact transportlike equation for the ensemble A _ 

averaged distribution function ('I'(s», with Tn and T" giv­
en by Eqs. (33) and (34). The statistics of the medium enter 
through the multipoint spatial correlations N" and N" de­
fined by Eqs. (30) and (31 ), with q and M in these equations 
given by S - (S) and (7 - «(7), respectively. We note that 
the statistical corrections in Eq. (21), embodied in the infi­
nite series, involve nonlocal (multiple integral) operators. It 
is clear from Eqs. (19) and (20) that Tn and 1'" decrease 
geometrically with n in the smallness parameter characteriz­
ing the statistical fluctuations. Accordingly, one can obtain 
the lowest-order, in this smallness parameter, approxima­
tion by keeping only the first term in the infinite series in Eq. 
(21). We then have, as the small fluctuation approximation, 
the transportlike equation 

d ('I') + «(7) ('I') + (' dS I exp[ - «7") - (7"\»] 
ds Jo 

x [(M(s)q(s\» - (M(s)M(s\»('I'(s\»] = (S). 
(37) 

We see that even in this lowest-order approximation, the 
statistical correction in the transportlike equation involves 
an integral operator. 

One can localize the integral operator in Eq. (37) by 
employing a Fokker-Planck approximation. Specifically, 
we approximate ('I'(s\» inEq. (37) by an Nth-order Taylor 
series expansion about the point s, i.e., 

('I'(S\»~ i:, .!. (SI -s)" d"('I'(s» . (38) 
n=O n! ds" 

Use of Eq. (38) in Eq. (37) and integrating term by term 
gives an Nth-order Fokker-Planck approximation to the 
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small fluctuation equation. To obtain explicit results, we 
consider the special case of a medium in which (u) is a slow­
ly varying (essentially constant) function of position. We 
then have 

(39) 

We further assume that the two-point spatial correlations in 
Eq. (37) are exponential in form, i.e., 

(M(s)q(sl» =aexp[ -1]ls-sll]' (40) 

(M(s)M(sl» =,8exp[ -1]IS-sll], (41) 

where a,,8, and 1] are slowly varying (essentially constant) 
functions of position. In the next section we present a Mar­
kov statistical model for a two-fluid mixture that predicts 
two-point spatial correlations of precisely this form, and 
gives explicit expressions for a, ,8, and 1] in terms of the 
parameters in the Markov model. Using Eqs. (38)-(41) in 
Eq. (37) we find the Nth-order Fokker-Planckapproxima­
tion to the small fluctuation equation given by 

d ('II) + (u) ('II) 
ds 

,8 N ( 1 d)n a - -;:- L - -;:- - ('II) = (S) - -;:- , 
U n=O U ds u 

(42) 

where we have defined 

u= (u) + 1]. (43) 

In obtaining Eq. (42) from Eq. (37), we have replaced the 
lower integration limit in Eq. (37) by Sl = - 00, which 
means we are neglecting terms of order exp( - us). This is 
consistent with u being large, which implies rapid conver­
gence of the sum in Eq. (42). We note that the assumption 
that u is large implies in general that 1] -I, the spatial correla­
tion length, is small. As we shall see in Sec. IV, the small 
fluctuation result, Eq. (37), and its Fokker-Planck approxi­
mation, Eq. (42), can yield nonphysical results if the fluctu­
ations are, in fact, not small. 

To summarize the results of this section, we have devel­
oped three descriptions of time-independent transport in a 
purely absorbing statistical medium. These are ( 1 ) Eq. (21), 
which is exact but very formal; (2) Eq. (37), which assumes 
small fluctuations; and (3) Eq. (42), which assumes small 
fluctuations, exponential spatial correlations with a small 
correlation length, and slowly varying spatial properties 
(u), a,,8, and 1]. In the next section we present a Markov 
statistical model for a two-fluid mixture that yields explicit A _ 

results for all of the required spatial correlations Nn and Nn • 

In particular, this model predicts two-point spatial correla­
tions of the exponential form given by Eqs. (40) and (41). 

III. A MARKOV STATISTICAL MODEL 

We consider a static turbulent (random) mixture of two 
immiscible fluids which we denote by fluid A and fluid B. We 
associate a cross section U j and source Sj (i = A,B) with 
each fluid. As a particle travels through this fluid mixture, it 
will pass through alternating fluid packets of A and B. We 
assume that the statistics of this situation can be described by 
a stationary Markov process in the following sense. Given 
that a particle is in fluid A at position s, the probability of 
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finding itself (in the absence of absorption) in fluid B at a 
position s + ds is simply given by ds/ A A' Similarly, given 
that a particle is in fluid B at position s, the probability of 
finding itself (in the absence of absorption) in fluid A at a 
position s + ds is given by dS/AB. We take the U;. S;, and A; 
to be constants, independent of position. 

For this two state Markov chain, we define the transi­
tion probability function Pij (s,t) , i = A,B, as 

P;j(s,t) =P[X(t) =jIX(s) =i], t'>s, (44) 

where the rhs of this equation is the conditional probability 
that the random variable X, which we define to be the state of 
the fluid, takes on the state j at a distance t (from some 
defined origin), given that the variable was in state i at a 
distance s from this origin. Without loss of generality, we 
assume t'>s. Since the probability of transition from fluid ito 
fluid j in a distance dt is given by dt / A;, one can perform a 
transition balance into and out of a given state, as a function 
of t for a fixed s. These balance equations are well known as 
the Chapman-Kolmogorov equations (forward form), 8 and 
are given by 

aPAB PAB PAA 
--= ---+--, 

at AB AA 
(45) 

aPAA PAA PAB 
--= ---+--, at AA AB 

(46) 

aPBA PBA PBB 
--= ---+--, at AA AB 

(47) 

aPBB PBB PBA --=--+-. at As AA 
(48) 

The boundary conditions on these differential equations are 
given by 

P AA (s,s) = PBB (s,s) = 1, (49) 

P AB (s,s) = PBA (s,s) = O. (50) 

It is clear that 

P AB (s,t) + P AA (s,t) = 1, 

PBA (s,t) + PBB (s,t) = 1, 

(51) 

(52) 

and hence two of the equations in Eqs. (45 )-( 48) are redun­
dant. 

The solution of Eqs. (45) through (50) is 

PAB(S,t) = (AA +AB)-IAB(1-e-d/J.p), (53) 

PAA(s,t) = (AA +AB)-I(AA +AB e-d/J.p), (54) 

PBA(S,t) = (AA +AB)-lAA(1-e- d /J.p ), (55) 

PBB(S,t) = (AA +AB)-I(AB +AA e-d/J.p
), (56) 

where we have defined 

A p- 1 = A A 1 + A B I, d = t - s. (57) 

We note that these four conditional probabilities are inde­
pendent of the choice of origin for the position variable; they 
depend only upon the distance t - s between the points t and 
s. 

We now definep; (s) as the probability that at any point 
s the fluid is in state i, i.e., 
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Pies) =P[X(s) =i]. (58) 

Since the A; have been assumed to be independent of posi­
tion, it is clear that the P; are also independent of position. 
That is, thes dependence on the (lhs) ofEq. (58) is redun­
dant. In terms of the Pi> we have for the ensemble averaged 
cross section and source, 

(0") = PA 0" A + PB O"B , 

(S) =PASA +PBSB' 

(59) 

(60) 

The total probabilities P; are related to the conditional pro­
babilities P ij by 

PA(t) =PAA(S,t)PA(S) + PBA (S,t)PB (s), (61) 

with a similar expression for PB (t) found by interchanging 
the indices A and B. Equation (61) holds in general, and in 
particular for our case in which the P; are independent of 
position. Use of Eqs. (53) through (56) in Eq. (61) gives 

PA(t) = (AA +AB)-I 

X{AA + [ABPA(S) -AAPB(s)]e-
dIAp

}. 
(62) 

For PA (t) to be constant, independent of t, Eq. (62) implies 

AB P A - A A PB = O. (63 ) 

We then deduce 

P; = (AA +AB)-IAi> (64) 

as the relationship between thep; and theA;. We shall short­
ly see that A;, and hence Pi> is proportional to the volume 
fraction ofthe ith fluid [see Eqs. (80) and (81) ] . 

We now tum to the calculation of the two-point auto­
correlation function for the cross section. We have 

(M(s)M(t) ) 

= ([O"(s) - (0") ][O"(t) - (0")]) 

= (O"A - (0") fPAA (S,t)PA + (O"B - (0") )2PBB (S,t)PB 

+ (O"A - (O"»(O"B - (0"» 

X [PAB (S,t)PA + PBA (S,t)PB]' 
(65) 

This gives, using Eqs. (53 )-(56) for the Pij (s,t) , 

(M(s)M(t» = (O"A -O"B)2PAPB e-
dIAp

, (66) 

where we recall that d is the distance between the points t and 
s. A similar calculation for the two-point cross-correlation 
function between the cross section and the source gives 

(M(s)q(t» = (O"A -O"B)(SA -SB)PAPB e-
dIAP

. 
(67) 

In the notation of the last section [see Eqs. (40) and (41) ] , 
we then have 

a = (O"A -O"B)(SA -SB)PAPB' 

/3= (O"A -O"B)2PAPB , 

1] = A p- 1 = A A 1 + A B I, 

(68) 

(69) 

(70) 

as the constants in the exponential two-point correlations. A 
similar exponential two-point autocorrelation as given by 
Eq. (66) was previously reported by Debye and Bueche9 and 
Debye, Anderson, and Brumberger lO within the context of 
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light scattering by an inhomogeneous solid. 
The higher-order correlations, Nnand Nn for n > 2 as 

defined by Eqs. (30) and (31), can be computed explicitly 
by an extension of these arguments. For a general n, these 
algebraic expressions are relatively complex. However, cer­
tain linear combinations of products of these higher-order 
correlations are simple exponentials. Omitting the consider­
able algebraic detail, one finds 

~a.[Tv Tv · .. Tv N] =H e-(S,-Sn)/Ap 
~ I PI P2 Pi _ I Pi n , 

; 
(71) 

~a.[Tv Tv · .. Tv N] =K e-(s,-Sn)IAp 
~ I PI P2 Pi _ I Pi n , 

; 
(72) 

where 

Hn = (O"A -O"B)n-I(SA -SB)PAPB(PB _PA)n-2, 

n>2, (73) 

Kn = (O"A -O"B)npAPB(PB _PA)n-2, n>2. (74) 

Here the spatial points are ordered such that SI>s2>,,,>sn' 
and the arguments .In the product terms in Eqs. (71) and 
(72) involving the Np , and TvPk are SI,s2, ... ,sn in this order. 
The coefficients a; and the subscripts Pk are as discussed in 
the last section,just below Eq. (27). 

The interesting point here is that the lhs's of Eqs. (71) 
and J 72) a~ precisely of the form needed in the expressions 
for Tn and Tn as introduced in the last section. That is, using 
Eqs. (71) and (72) in Eqs. (33) and (34) gives the relatively 
simple results for the nth-order term in Eq. (21) as 

Xexp[ -o-(S-Sn_I)]' n>2, (75) 

LTn = 1'dsl 1" ds2 .. · 1'n

-

2 

dSn _I Kn ('I'(sn -I» 

Xexp[ -o-(S-Sn_I)]' n>2, (76) 

where [seeEqs. (43) and (70)] 

(77) 

In writing Eqs. (75) and (76) we have used an expression 
analogous to Eq. (39) for (1') - (1' n _ 1 ) since our Markov 
statistical model is restricted to cases for which (0") is inde­
pend~nt of position. We note that H nand K n' and hence Tn 
and Tn' vanish for n > 2 in the special case that P A = PB = !. 
Hence the small fluctuation approximation introduced in 
the last section, Eq. (37), is, in fact, exact for all size fluctu­
ations whenpA = PB =!. For any other values ofpA andpB' 
Eq. (37) is only strictly valid for vanishingly small fluctu­
ations. As we shall see shortly, PA = PB =! implies equal 
volume fractions of the two fluids A and B. 

Let us now address the question as to the physical mean­
ing of our Markov model. Since the probability of transition 
from fluid ito fluidj in a distance ds is given by ds/ A;, where 
A; is a constant, the distribution of chord lengths in a fluid 
packet is a classical Poisson process. That is, the chord 
length L of a given fluid packet is exponentially distributed, 
with a probability density function given by 

h(L) =A;-Ie-LIA" i=A,B. (78) 
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Equation (78) is implied by the Chapman-Kolmogorov 
equations by solving these equations after deleting the transi­
tion-in terms [the second term on the rhs's of Eqs. (45)­
( 48) ]. The mean of this exponential distribution, (L i ), is 
given by 

(79) 

Thus the constant Ai in the Markov model is just the average 
chord length through a fluid packet of type i. This average 
chord length is given by the Debye formula9

,10 

Ai = 4V;lS, (80) 

where Vi is the volume associated with fluid i, and S is the 
common surface area between the fluid packets of fluids A 
and B. Using Eq. (80) in Eq. (64) we find 

(81) 

That is, the probability pj is just the volume fraction of fluid i 
in the two-fluid stochastic mixture. 

We now have the physical interpretation of our Markov 
model. The statistics of the two-fluid mixture are such that a 
particle traveling through this fluid sees alternating packets 
of fluids A and B, with the distance traveled (in the absence 
of absorption) in any fluid packet being a random variable 
with an exponential density distribution given by Eq. (78). 
Further, the parameter Ai in this distribution is the average 
chord length through a fluid packet of type i, and is related to 
the volume fraction of fluid i in this two-fluid mixture 
through Eqs. (80) and (81). We note, however, that it is not 
sufficient to know the two volume fractions P A and PB' In 
addition to these volume fractions, one must know one of the 
Ai to completely specify the statistics of the two-fluid mix­
ture. 

Before leaving this section, we use this Markov model to 
calculate another quantity which we shall find useful. The 
optical depth 1'(s) between any two points a distances apart, 
say So and So + s, is defined by 

1'(s) = (,o+s ds' O'(s'). 
Jso 

(82) 

Since 0' is a random variable, so is 1'. We seek the probability 
density function for the random variable 1', given a distance 
s. Since our medium is described by statistics which are inde­
pendent of position, the point So is irrelevant; the random 
variable l' is independent of So. Since there are two states, A 
and B, between So and So + s, we have 

1'(s) = O'A X [total track length through A in distances] 

+ O'B X [total track length through B 

in distance s] . (83 ) 

To obtain the distributions of the total track length through 
A and B in a distance s, we make use of a problem outline 
given by Lindley. 11 Let the length a particle travels through 
in the ith packet of A, before finding itself in fluid B, be 
denoted by the random variable Xi' Similarly, let the length a 
particle travels through in the ith packet ofB, before finding 
itself in fluid A, be denoted by the random variable 1';. We 
know from Eq. (78) thatXj and Yj in our model are inde­
pendent exponentially distributed random variables, and 
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their cumulative distribution functions are given by 

P(Xi <x) = G(x) = 1- e- x1A
\ O..:;x< <:fJ (84) 

P(Yi<y)=H(y) = l_e- Y1AB
, O":;Y<<:fJ. (85) 

We now define 

Gn (x) =PCtl Xi <x), n>l, 

Hn(y) =PCtl Yi <Y) , n>l, 

with 

Go(x) = Ho(y) = 1. 

(86) 

(87) 

(88) 

Gn (x) andHn (y) represent, for n> 1, the distribution of the 
total track length in fluids A and B, respectively, in n packets 
of fluid. 

We also define the random variable {3(s) as the total 
track length of fluid B in the distance s given that the point So 
is in fluid A. Similarly, we define the random variable a(s) 
as the total track length of fluid A in the distance s given that 
the point So is in fluid B. Then, according to Eq. (83) the 
optical depth as a function of the distances, 1'(s), is given by 
one of two expressions, namely, 

1'(s) =O'B {3(s) +O'A [s-{3(s)], soEA, (89) 

or 

1'(s) =O'Aa(s) +O'B[s-a(s)], soEB. (90) 

The cumulative distribution function F(t,s) is the probabil­
ity that 1'(s) is less than a value t, given a geometric distance 
s. We have 

F(t,s) =P[1'(s) <t] 

=P{O'B {3(s) + O'A[s-{3(s)] <t}P(soEA) 

+ p{O' A a(s) + O'B [s - a(s)] < t}P(soEB). 
(91 ) 

Recalling that 

P(soEA) =PA' P(soEB) =PB' 

and rearranging Eq. (91), we find 

[ 
t -O'BS ] 

+PBP a(s) < . 
O'A -O'B 

(92) 

(93) 

Ifwe label the fluids such that 0' A > O'B' Eq. (93) immediate­
ly gives, since O..:;a,/3..:;s, 

{
O, 

F(t,s) = 1, (94) 

which is just the physical statement that in a distance s the 
minimum optical depth is O'BS and the maximum optical 
depth is 0' AS. 

To evaluate F(t,s) for O'BS < t<O'AS, we need compute 
the distributions for a(s) and {3(s). To obtain the distribu­
tion for {3(s), we note that if there are exactly n transitions 
from state A to state B in a distance s - x, then the track 
length through the n packets of fluid B must lie between ° 
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and x. The probability of exactly n transitions from state A in 
a distance s - x is given by 

P=Gn(s-x) -Gn+I(S-X). (95) 

Thus we may express the distribution for {3(s) as 

"" P[{3(s) <x] = 2: Hn(x)[Gn(s-x) -Gn+l(s-x)]. 
n=O 

(96) 

In a similar fashion, we can deduce the distribution for a (s) 
as 

00 

P[a(s)<x] = 2: G,,(x)[H,,(s-x)-Hn+l(s-x)]. 
n=O 

(97) 

Now, it is known l2 that the sum of n identically distributed 
exponential random variables with parameter 1/ A is given 
by a gamma distribution with parameters n and 1/ A. Thus 
we have in our case 

r (X'/AA)n-le-x'/AA 
G" (x) = Jo dx' AA (n - 1)! ' 

i
~ Cy'/A )n-Ie-Y'/AB 

HCy)- dy, ____ B ______ _ 
n - 0 AB (n - 1)! ' 

From Eqs. (88), (98), and (99) we deduce 

G,,(s-x) -Gn+l(s-x) 

_ 1 (s-x)n -(S-X)/AA -- -- e , 
n! AA 

Hn(s-x) -Hn+l(s-x) 

_ 1 (s-x)n -(S-X)/AB -- -- e , 
n! AB 

n>l, 

Thus P[{3(s) <x], given by Eq. (96), becomes 

P[{3(s) <x] =e-(S-X)/AA {I + (S-X)1I2 
AAAB 

(98) 

(99) 

( 100) 

Lx e-Y/AB [(s-x)y)II2]} 
X dy 1/2 II 2 , 

o Y AAAB 
(101) 

where we have recognized the Taylor series expansion for 
the modified Bessel function as 

(102) 

A similar result is found for P[a(s) <x]. Using the fact that 
P[{3(s) >x] = 1 - P[{3(s) <x] and inserting these results 
into Eq. (93) gives the cumulative distribution function in 
the optical depths range li BS < l' < liAS as 

{ [ 
(UV)'" ]} 

F(1',s)=PA 1_e- u 1+2)0 dxII(2x)e- x2/u 

liBS < l' < liAS, 

where we have defined 

u = _1_ ( l' - liBS ) ; 
AA liA - liB 
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(103) 

(104) 

Equations (94) and (103) give the cumulative distribution 
function for all physically meaningful (namely positive) val­
ues of 1'; the geometric distance s is simply a parameter in this 
distribution. We use this distribution function in the next 
section to obtain the exact solution to a transmission prob­
lem. 

IV. SOLUTIONS FOR <'II(s» AND NUMERICAL RESULTS 

As was stated in the Introduction, one way to obtain the 
solution for ('II(s» is to ensemble average the solution 'II(s) 
as given by Eq. (3). We carry out the algebraic details of this 
averaging for the source-free (S = 0) problem. In this case 
Eq. (3) is simply 'II(s) = '110 exp( - 1'), and ensemble aver­
aging this pure exponential, we have 

('II(s» = '110 (exp ( -1'» ='110 L"" drf(r,s)e- r, 

(105) 

wheref( r,s) is the probability density function for the opti­
cal depth random variable 1', withs a parameter in this distri­
bution function. An integration of Eq. (105) by parts intro­
duces the cumulative distribution function F( r,s), and we 
have 

('II(s»='110 [e- UAS + i::SdrF(r,s)e-r] , (106) 

whereF( r,s) is given by Eq. (103) for our two-fluid Marko­
vian stochastic mixture. 

To evaluate the rhs of Eq. (106), we introduce the La­
place transform, with a transform variable P, of ('II (s» as 
t/J(p), i.e., 

t/J(p) = LX> dse-PS('II(s». 

Laplace transforming Eq. (105), we then obtain 

t/J(p) 

( 107) 

= '110 [ (liA + p)-I + Loodsi::sd1'F(r,s)e- (Ps+r)] . 

(108) 

We change integration variables in Eq. (108) from (s,r) to 
(u,v), where u and v are. defined by Eq. (104). The double 
integral in Eq. (105) then becomes a double integral over the 
first quadrant of (u,v) space. Inserting Eq. (103) for F( 1',s) 
we then have 

t/J(p) = 'IIo(liA + p) -I + 'IIoAAAB (liA - liB) 

xL"" du LOO dv [PA(1-e- U
) +PBe - V 

- 2PA g(u,V) + 2PB g(v,u)] 

xexp{ - [AA (PA + liA)U + AB (PB + liB )vp, 
( 109) 

where we have defined the function g(u,v) as 

(UV)'" 
g(u,v) = e - U Jo dx II (2x)e - x

2
iu. (110) 

The difficult integrations on the rhs of Eq. (109) can be 
written in generic form as 
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"" "" L(UV) 1/2 

1= L du L dve-ue-(au+bul 0 dxII (2x)e-
x2

/
u

, 

(111 ) 

where a and b are positive constants. Interchanging the or­
ders of the x and v integrations in Eq. (111) gives 

1= ("" due-(1+QlUi"" dXI I (2x)e- X2
/
u i"" dve-bu. 

1 0 ~h 
(112) 

The integral over v is trivial, and if we change integration 
variables from u to y according to y = (1 + a) u, we then 
have 

1 L"" 1= dxI I (2x) 
b(1 + a) 0 

L""d [( (1+a)(l+b)X
2
)] X yexp - y+ . 

o y 
(113) 

This integral over y can be expressed l3 in terms of the modi­
fied Bessel function K I (z), and we are then left with the 
single integral over x 

(114) 

This final integral over x can be expressed13 as a hypergeo­
metric function F( 2, 1 ;2;Z) = (1 - z) - 1, and we obtain the 
relatively simple result 

1= {2b(1 +a)[(1 +a)(1 +b) _1]}-I. (115) 

Using this generic result to integrate the terms involving 
g(u,v) and g(v,u) in Eq. (109), we obtain after some alge­
braic simplification, 

.I.(p) = \110 [ P + U ] , 
'fJ (p + u)(p + (u» - /3 

(116) 

where (u) is the ensemble averaged cross section given by 
Eq. (59), /3 is the coefficient in the two-point autocorrela­
tion function [see Eq. (41)] given by Eq. (69), and u is 
defined by 

U=PBUA +PAUB +AAI +A;l. (117) 

Laplace inversion ofEq. (116) then gives the exact result for 
(\II(s» in the source-free, two-fluid Markovian mixture as 

with 

r ± = ~{(u) + O'± [«u) - 0')2 + 4/3 ]1/2}. (119) 

For equal volume fractions, i.e"PA = PB = !, Eq. (118) has 
been obtained earlier by Bourree4

•
15 by the method of para­

stochastic operators in the special case ofa dichotomic Mar­
kov chain. However, as discussed by Frisch,4 it is only the P A 
= PB = ! result which can be obtained by Bourret's method. 
This is related to the discussion below Eq. (77) in this paper 
concerning the vanishing of Hn and Kn for n > 2 when PA 
= PB =~. Equation (118) has the proper behavior in 
known limiting cases, namely, 
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(\II(s» _ e-O'BS, 
AA-.() 

(\II(s» _ e-O'AS, 
AB-.() 

(\II (s) ) _ e - (O')s, 

AA,AB-.() 

(120) 

(121) 

(122) 

(123) 

There is one additional limit that is interesting to consid­
er, namely, uB-D and U A -00. This corresponds physically 
to the case of packets, with an infinite optical thickness, of 
fluid A imbedded in a vacuum background. In this case Eq. 
( 118) reduces to 

(\II(s» _ PB e- S/AB• (124) 
O'B-.() 

The factor PB on the rhs of Eq. (124) is just the probability 
that a particle starts in a packet of fluid B, the vacuum. [If it 
started in fluid Ai it would be absorbed at s = 0 since U A 
= 00, and hence not contribute to (\II(s».] The exponen-

tial term in Eq. (124) merely states the correct physical fact 
that in this limit the mean free path of a particle is just AB , the 
average distance between packets of fluid A. 

We can use the exact result for (\II(s» given by Eq. 
(118) to assess the accuracy of the approximate transport 
models introduced in Sec. II, namely the small fluctuation 
description given by Eq. (37), and the Nth-order Fokker­
Planck approximation to this small fluctuation equation, 
given by Eq. (42). In the source-free (S = 0) case with (u) 
independent of position, Eq. (37) is written, using Eq. (41) 
for the required two-point spatial correlation with 1'/ given by 
Eq. (70), 

d (\II) + (u)(\II) =/3 (' dSI e-U(S-S')(\II(sl»' (125) 
ds Jo 

with/3 and u given by Eqs. (69) and (77), respectively. The 
integral in this equation is of the convolution type, and hence 
Eq. (125) is easily solved by Laplace transforming. The re­
sult is 

(\II(s» = \110 [( :++ ~ ~ ) e- r
+

s + (r: __ rr __ ) e-
r
_

s
] , 

(126) 

where, in this case, 

r± =H(u)+u±[«U)-U)2+4P]1/2}. (127) 

A comparison of this small fluctuation result [Eqs. (126) 
and (127)] with the exact result [Eqs. (lI8) and (119)] 
shows that they are very similar in form. The only difference 
is that the small fluctuation result involves U, whereas the 
exact result involves U in place of U. These two results will be 
identical when u = U, which occurs for PA = PB =!; i.e., 
equal volume fractions of the two fluids. We previously 
pointed out [see the discussion below Eq. (77)] that the 
small fluctuation equation is, in fact, exact for all size fluctu­
ations whenpA = PB =!. However, we do not have a phys­
ical understanding as to what is special about equal volume 
fractions for the two fluids which makes the small fluctu­
ation equation exact in this case. 
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We now consider Eq. (42), the Fokker-Planck approxi­
mation to this small fluctuation equation, in the low-order 
casesN = 0,1, and 2. In the source-free (S) = a = 0) case, 
the solution is given by the pure exponential 

(128) 

where the exponent r is given in these three Fokker-Planck 
approximations by 

N=2, 

A (0-)0- - {J 
r=o , N= 1, 

f?- + {J 
r = (0)0- - (3)10-, N = O. 

(129) 

( 130) 

(l31 ) 

We note that if we neglect the statistical corrections entirely, 
we have the so-called "atomic mix" approximation, and the 
transport equation for ('I') is simply, in the source-free case, 

d ('I') + (a) ('I') = o. 
ds 

(132) 

This equation again has Eq. (128) as its solution, with 
r = (u) in this case. 

To obtain some idea of the accuracy of these various 
approximate formulations, we present in Tables I and II a 
few typical numerical results. We have set to unity the inci­
dent distribution, i.e., '1'0 = 1, and have chosen a length scale 
such that (u) = 1 for all cases considered. Also, these two 
tables give ('I' (s» at s = In 10, and hence for all cases the 
atomic mix result is simply ('I' (s» = 0.1 since 
(u)s = In 10. The deviation of our exact result for ('I') as 
given by Eq. ( 118) from 0.1 gives an indication of the impor­
tance of properly accounting for the statistical nature of the 
medium in a transport calculation. The deviation of the 
small fluctuation equation results, and the corresponding 
Fokker-Planck approximations, from the exact results gives 
an indication of the accuracy of these various simplified, but 
approximate, transport descriptions in a random medium. 

Table I presents four different cases, each having A.A 
= A.B, and hence PA = PB =~. As we have already re­

marked, the small fluctuation equation is exact for all size 
fluctuations when PA = PB =!. We see from this table, in 
particular for the last case, the importance of accounting for 
the statistical nature of the medium. That is, for this case the 
atomic mix model which completely ignores this statistical 
nature underestimates ('I') by a factorin excess of3. We also 
see from this table that the lowest-order (N = 0) Fokker­
Planck result is more accurate than the higher-order (N = 1 
and 2) results. This is probably due to extending the lower 
integration limit in Eq. (37) to SI = - 00 in deriving the 
Fokker-Planck approximation given by Eq. (42). This 
makes the approximation asymptotic in character; keeping 
more terms in the sum in Eq. (42) does not necessarily im­
prove the accuracy of the result. 

In Table II we present five additional cases, but for these 
casesA.A #A.B' andhencePA #PB #!. Here we can assess the 
accuracy of the small fluctuation approximation. We see, 
from the last two cases in this table, that the small fluctu­
ation model is completely inadequate when the fluctuations 

2534 J. Math. Phys., Vol. 27, No. 10. October 1986 

TABLE I. (IJIOn 10) > for PA = PB = !. 

Parameters 

AA = 0.1 

AD = 0.1 

uA = 1.1 
uD = 0.9 

AA = 10.0 
AD = 10.0 
u A = 1.1 
u B = 0.9 

AA = 0.1 

AD = 0.1 

CJ'A = 1.9 
U D = 0.1 

AA = 10.0 
As = 10.0 
U A = 1.9 
U B = 0.1 

Exact N=2 

0.1001 0.1001 

0.1023 0.1049 

0.1095 0.1098 

0.3592 0.6362 

Fokker-Planck 

N= I N=O 

0.1001 0.1001 

0.1036 0.1019 

0.1097 0.1093 

0.6194 0.4732 

are large and the statistical corrections are important (i.e., 
one is far from the atomic mix limit). In particular, for the 
last case ('I') exceeds unity; the small fluctuation equation is 
predicting growth rather than decay as the particles traverse 
the medium. This comes about since r _ as given by Eq. 
( 127) is negative. Such growth also occurs for the second to 
last case in this table, although in this case ('I') ats = In 10 is 
still less than unity. The "complex" entry in this table means 
that Eq. (129) gave a value for r which is not real. 

Based upon these results and other cases we have con-

TABLE II. (IJI (In 10) > for PA #PD' 

Small Fokker-Planck 
fluctuation 

Parameters Exact equation N=2 N=1 N=O 

AA = 0.02 0.1000 0.1000 0.1000 0.1000 0.1000 
AD = 0.08 
U A = 1.1 
U B = 0.975 

AA = 2.0 0.1004 0.1004 0.1007 0.1006 0.1004 

AD = 8.0 
uA =1.1 
U B = 0.975 

AA =0.02 0.1083 0.1086 0.1086 0.1086 0.1085 

As =0.08 
U A =4.0 

Un = 0.25 

AA = 2.0 0.3694 0.9989 1.6656 1.6131 2.4245 

As = 8.0 
U A =4.0 
Un = 0.25 

AA = 1.0 0.5802 9.5438 complex 8.5259 283.90 

AD = 9.0 
U A =9.1 
UD =0.1 
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sidered, it appears that the following two conclusions can 
tentatively be drawn. First, the small fluctuation equation 
should only be used when the fluctuations are, in fact, small 
or when PA ZPB z~. Second, the Fokker-Planck model, 
since it is an approximation to the small fluctuation equa­
tion, should only be used under the same circumstances, and 
the N = 0 model seems to be the most accurate. 

We conclude this section by obtaining an exact solution 
for ('I1(s» in the presence of a source (S #0) for our two­
fluid Markovian mixture. In this case, we solve the exact 
transportlike equation for ('11 (s ) ), namely Eq. (21), as op­
posed to ensemble avera~ng Eq.j 3). The statistical correc­
tion terms in Eq. (21), Tn and Tn' are given by Eqs. (75) 
and (76), and can be rewritten as 

LTn =Hn fdStR(S-St) f'dS2 R(St- S2) 

r' is' LTn =Kn Jo dstR(s-St) 0 ds2 R(St- S2) 

... fn -2 dSn _ t R (Sn _ 2 - Sn _ t ) ('11 (Sn _ t ) ), 

where the kernel R (s) is given by 

R(s) = exp( - o-s). 
A. _ 

(133) 

(134) 

( 135) 

Written in this way,LTn andLTn can be seen to be multiple 
convolution integrals, and hence Eq. (21) can be solved by 
Laplace transforming. If we again define t/J (p) as the Laplace 
transform of ('11 (s) ) according to Eq. (107), then a Laplace A. _ 

transform of Eq. (21) with LTn and LTn given by Eqs. 
(133) and (134) gives 

(p + (u) )¢(p) - '110 
00 

+¢(p) 2: (-l)n+tKn+
2

(p+0-)-<n+t) 
n~O 

00 

_p- t 2: (-1)n+tHn+
2

(p+0-)-<n+1) 
n=O 

(136) 

UsingEqs. (73) and (74) for Hn andKn inEq. (136), sum­
ming the resulting geometric series, and solving for t/J (p ), we 
find 

¢( ) = 'I1o(p+u) +p-t[(S)(p+u) -a] (137) 
p (p+u)(p+(u»-{3' 

where a, {3, and u are given by Eqs. (68), (69), and (117), 
respectively. The Laplace inversion ofEq. (137) gives the 
exact result, within the context of our Markov model, for the 
ensemble averaged distribution function ('11 (s» as 

('I1(S»='110[( r+-u)e- r
+
s+( u-r_ )e-r_sJ 

r+-r_ r+-r_ 

2535 

+ [ (S) (u - r +) - a J e - r +s 

r+(r+-r_) 

_ [(s)(u-r_) -aJ e-'-'+ (S)u-a, 
r_(r+ -r_) r+r_ 

( 138) 
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with r ± again given by Eq. (119) . We note that in the ab­
sence of a source ( (S) = a = 0), Eq. (138) agrees with the 
result obtained earlier [see Eq. (118)] by ensemble averag­
ing Eq. (3) with S = o. We emphasize that Eq. (138) is an 
exact expression for ('I1(s», the ensemble averaged distri­
bution function, but only for time-independent transport 
through a purely absorbing (no scattering) medium with 
statistics as described in Sec. III. In particular, this statistical 
model is a Markovian mixture of two immiscible fluids, and 
further assumes that the Markov statistical parameters Aj as 
well as the fluid parameters U j and Sj' i = A,B, are all inde­
pendent of position. 

v. CONCLUDING REMARKS 

The work summarized in this paper represents our first 
attempt at developing a general formalism for describing lin­
ear transport through a medium composed of two randomly 
mixed fluids. We have considered only the very simplest sit­
uation, that of time-independent transport through a purely 
absorbing medium for a two-component Markovian mix­
ture, with all parameters A j' U j, and Sj, i = A,B, independent 
of position. Clearly, many generalizations suggest them­
selves. With the inclusion of time dependence and scattering, 
a generic linear transport equation is given by 

1 a'l1 - - + fl • V'I1 + (u + U ) '11 v at a s 

= r dfl'us (fl'---+fl)'I1(fl') +S, (139) 
J41T 

where '11 = 'I1(r,fl,t), and the remaining notation in Eq. 
( 139) is standard. In addition to explicit consideration of 
time dependence and a scattering contribution, one could 
investigate other (than Markov) statistical models for the 
random variables U a , Us, and S. 

With regard to the simplified version of Eq. (139) con­
sidered in this paper (us = a'l1 / at = 0), an open question is 
the physical realizability of our Markov model. Along any 
given direction s, one can easily envision a mixture of two 
types of fluid packets, with each packet of fluid i having an 
exponential chord length distribution with a meanA j. How­
ever, can one realize such exponential chord length distribu­
tions simultaneously in all directions in three-dimensional 
geometry? In this regard, we note that if the fluid mixture is 
composed of alternating fluid slabs, with each slab of fluid i 
infinite in two dimensions and with an exponentially distrib­
uted thickness with mean Tj in the third dimension, then one 
indeed realizes exponential chord length distributions in all 
directions simultaneously. However, the mean chord length 
will be direction dependent and givenbYA; = TJIl, where;U 
is the cosine of the angle between the particle flight direction 
and the normal to the slab surfaces. Can any statement con­
cerning physical realizability be made for nonslab geometry, 
and can one envision any fluid packet geometry which has 
exponential chord length distributions with the same mean 
Aj in all directions? It would also be interesting to investigate 
the robustness of the results given in this paper to the statisti­
cal model used. Specifically, within the context of a two-fluid 
mixture, how sensitive are the results to the use of an expo­
nential distribution of chord lengths? We note that the expo-
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nential distribution contains only one parameter Ai' and 
hence the average chord length (which is just Ai) and the 
variance (which is just A ;) are not independent. Hence one 
might ask how sensitive are our results, e.g., Eq. (138), for 
given average chord lengths of each fluid component, to the 
variances (and higher moments) of the chord length distri­
butions? Clearly the applicability of the exponential (or any 
other) distribution must be established from the underlying 
physics of the particular transport situation under consider­
ation. We mention parenthetically that the exponential dis­
tribution appears to be a fairly good description of the distri­
bution of rock fragment sizes, as discussed by Engleman, 
Jaeger, and Levi. 16 The hope is that relevant transport re­
sults are relatively insensitive to the chord length distribu­
tions, thus obviating the need for a detailed chord length 
description. 

We hope to address these points, as well as extensions of 
our analysis to more general transport equations, in future 
publications. 
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A Goldstone-type theorem is proved for quantum field theories in any n;;;.2 space-time 
dimensions, without assuming local commutativity. 

I. INTRODUCTION 

The problem of associating a symmetry with a con­
served current in axiomatic quantum field theory (QFf) 
has been widely considered in the literature (see, e.g., Refs. 1 
and 2 and references therein). Goldstone's theorem3 plays a 
distinguished role in this context, inasmuch as it gives equi­
valent conditions for ensuring an affirmative answer to the 
above mentioned problem. Postponing its precise formula­
tion to what follows, we want to recall, for the time being, 
that, besides some assumptions quite usual in relativistic 
QFf's, this theorem requires locality. It is, therefore, oflittle 
use in theories where locality cannot be maintained on the 
physical subspace-an outstanding example being the 
Gauss law in any Abelian or non-Abelian gauge theory. 

In the present paper we formulate a Goldstone-type 
theorem that does not require local commutativity. The 
proof is given in any n;;;.2 space-time dimensions. 

II. CONSTRUCTION OF CHARGES 

We start by concisely recalling the procedure generally 
followed in order to define charge operators without making 
use oflocality. 

Let {K,( .,.)} be a Hilbert space andDCK a dense set 
containing a vector 0 (the vacuum) normalized according 
to 

(0,0) = 1. (1) 

A conserved vector current is represented by the operator­
valued distributions {j", (I): f-L = O,I, ... ,n - l,feY(lRn)} 
defined on D and satisfying 

j", (a'" /)<f> = 0, V<f>eD, (2) 

(<f>,r(/)'II) = (r(I)<f>,'II), V<f>,'IIeD. (3) 

Without loss of generality one may assume 

(O,jo(/)O) = O. (4) 

In what follows we postulate that the distribution 

w",.,(x,y) = (j",(x)O,j.,(y)O)eY'(R2n ) (5) 

is translation invariant and Lorentz covariant. Then there 
exists 

(6) 

The distribution tu",., is suP£.os~to satisfy the spectral con­
dition, i.e., supp tu ",., (P) C V +' V + being the closure of the 
future light cone. As well known (see, e.g., Ref. 4), for n>3 
(the case n = 2 being separately treated in Remark 5 below) 

our requirements on the current imply the Kallen-Lehman 
representation 

w",.,(I,g) = J dp(p)(p",p., _g",.,p2)/(p)g(p) (7) 

= J df-L(s)J dnP/(P)(p",p., 

- g",.,p2)g(p)21T9(po)8(p2 - s). (8) 

Heredp(p) is a positive measure from Y(Rn) with support 
in 11+ and df-L (s) is a positive tempered measure with sup­
port in [0, + 00), hereafter referred to as the spectral den­
sity. 

The construction of the charge operator associated with 
j", goes as follows. One first introduces two smearing func­
tions5 

/R (x) =/(R -IX), R>I, leY(Rn
-

I ), 

lex) = 1, for Ixl';;;l, I(x) = 0, for Ixl;;;'2; 

a R (xo) = 2R -la (2R -IXO), aeY(RI), 

a(xo) =0, for Ixol>l, J dxoa(xo) = 1; 

by which the finite volume charge 

QR =r(aRIR) 

(9a) 

(9b) 

(10) 

is defined. Then the task of giving sense to the formal expres­
sion S dn-Ixjo(x) can be accomplished by means of the 
following lemma, whose proof (see, e.g., Ref. 1) follows 
from a straightforward application of Riesz's theorem. 

Lemma: Assume the following. 
(i) V<f>,'IIeD there exists the limit 

lim (<f>,QR'II) = Q(<f>,'II). 
R_oo 

(11 ) 

(ii) The sesquilinear form Q(-,.) is continuous in the 
first argument, i.e., there exists a c('II) > 0, such that 

(12) 

Then there exists a symmetric operator Q defined on D and 
such that (<f>,Q'II) = Q(<f>,'II). 

(iii) If, in addition, 

lim (<f>,QRO) = 0, V<f>eD, 
R-oo 

then 

QO=O. 

(13) 

(14) 
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Following the standard terminology, the validity (viola­
tion) of ( 14) will be referred to as the exactness (spontane­
ous breaking) of the symmetry to be associated withj 1" Ac­
tually, even when (14) holds, further steps are to be made in 
order to represent a symmetry group on JY. Indeed the 
lemma provides us with only a symmetric operator Q. The 
question of existence and uniqueness of a self-adjoint exten­
sion of Q will be not touched upon here (see, however, Ref. 
1) . 

Some remarks concerning the assumptions of the 
lemma are in order. 

Remark 1: We note that (11) does not need to hold for 
any <l>EJY, but only for <l>ED. This means that even the weak 
convergence of the sequence {QR n} is not required in (13). 

Remark 2: Consider the case when there exists a set of 
fields fjj = {Bj(j): i = 1, ... ,N; jEY(R")} local with re­
spect to j ° and such that Y qJ n is dense in JY, Y qJ being 
the polynomial algebra generated by fjj. Then D = Y qJ n 
automatically satisfies (i) and (ii), provided (13) holds. In 
local QFf's, which precisely enter this framework, one can 
prove l

-
3 the following theorem. 

Theorem 1 (Goldstone): A necessary and sufficient con­
dition for the validity of ( 13) is the absence of discrete zero 
mass states connected to n by j 0. 

Remark 3: In the case of gauge theories, i.e., whenjl' 
obeys a Gauss law, and Q is nontrivial, any set fjj such that 
Y qJ n is dense in JY, necessarily is nonlocal with respect to 
jO (see Ref. 6). 

As a consequence of the last two remarks, the absence of 
locality leads to the problems PI: to find a substitute of rela­
tive locality from which (i) and (ii) can be deduced; and Pz: 
to find necessary and sufficient conditions guaranteeing 
(13 ). 

In our knowledge there is no general solution to P I' This 
problem has, however, been successfully faced in four-di­
mensional massive spinor quantum electrodynamics,7 by us­
ing the specific properties of the model. 

In what follows we will be concerned with Pz' More 
precisely we are looking for sufficient conditions ensuring 
( 13 ). A first such condition is provided by the following 
proposition. 

Proposition 1: Assume there exists an R-independent 
constant C such that 

(15) 

Let JY carry a unitary representation U(a), aER", of the 
translation group in M", n;;;.2, and let n be the unique trans­
lationally invariant state in JY. Then 

w-lim QR n = O. (16) 
R~ao 

Proof: Let us introduce the function 

1]R(P)EY(Rn), O<1]R(p)<I, 

_{I, forlPl z poz+p/+",+p!_I<m/R, 
1]R (p) - 0, for IPl z;;;.2m/R, (17) 

with m a positive arbitrary constant. Due to (7) and (10) 
one has 
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(18a) 

(I8b) 

where - 0 means include a possible pure point part of dJ-l 
concentrated at s = 0 and 

1 f -g(R zs) = '2 dn _ I q E(R Zs,q) I 

is obtained by integrating with respect to po, setting Rp = q 
and 

E(x,y) = (x2 + y2) 1/2. (19) 

Note that since aEY(RI ), g(X)ECn-I(RI ) and is offast 
decrease for x~ + 00. From (I8a) one gets 

(20) 

with 

Jm =R 2(n-1l f dp(p)pZlf(RP)a(~ Rpo)I\I-1]R(P») 

(2Ia) 

and 

Jo= ~ R 2(n-l) f dJ-l(S)f dn_ IPE(s,p)-l p2 

x If(Rp)&(!RE(s,p» 1
2 1]R(E(s,p),p). (2Ib) 

In obtaining the last formula we have again used the repre­
sentation (18b). Since J m is positive definite, (15) implies 

Jo<C 2
• (22) 

We also claim that J m ~ faster than any inverse power of R, 
as R ~ 00 • Indeed, noting that p21 f IZ is continuous and offast 
decrease for Ipl~oo, one may estimate it by 

(23) 

with M;;;.O an arbitrary integer and d M > 0 a suitable con­
stant. Likewise for I&I Z

, so that for any M there exists a 
DM > 0, such that 

JM<DzM f dp(p)p2(1 + R Zp2) -ZM 

X (1 + R zpoz) -ZM(I -1]R (p») (24a) 

<DZM (1 + mR) -ZM f dp(p) (1 + pZ) -M(1 + POZ) -M. 

(24b) 

In deriving (24b) we have used that R;;;.I and the properties 
of 1] R (p). Moreover the integral in (24b) is finite for suffi­
ciently large M, since dp (p) is of at most polynomial growth. 
Let now 1 denote the identity operator in JY and consider 

(25) 
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with 

Km =R 2(n-1) f dP(p)p21/(RP)a(~ Rpo) 12 

X (1 -1JR (p »2[ 1 - cos(ap)] (26a) 

and 

Ko= ~ R 2(n-l) f d,u(S)f dn_1PE(s,p)-1 

xp21 /(Rp)a(!RE(s,p) W 
X1JR (E(s,p),p)2[ 1 - cos(aoE(s,p) - a· p)]. 

(26b) 

Due to the inequalities 2(1 - cos x) = sin2(~) 
<min{qx2

}, one, respectively, gets 

(27) 

and 

1JR(E(s,p),p)2{1- cos(aoE(s,p) - a· p)}<laI 2mIR, 

whence 

Ko<laI2mJoIR<laI2mC2IR-o, for R--+oo, (28) 

in force of (22). Inserting (27) and (28) into (25), and 
taking (24) into account, one gets 

lim 11(1- U(a»)QROIl = O. 
R-oo 

(29) 

Furthermore, (15) implies that {QR O} admits weakly con­
vergent subsequences. Let {QR

k 
O} be anyone among them 

and let 

w-lim QRkO = 4>. 
k_ oo 

We claim that 

4>=0, 

(30) 

(31) 

which proves (16), since {QRkO} is arbitrary. Indeed, con­
sider the matrix element ('1',(1 - U(a) )0), where 'l'eK is 
arbitrary. Taking the limit k--+oo in the Schwartz inequality 

1('1',(1- U(a»)QRk O)I<II'I'IIII(1- U(a»)QRkOIl 

and using (29) and (30) one gets 

4> = U(a)4>. (32) 

Equation (32), combined with the unicity of the vacuum, 
leads to <t> = zO, ZEC I

. Finally, due to (1) and (4), 

Z = (0,z0) = (0,4» = w-lim (O,QRO) = 0, 
R_oo 

whence (31). This concludes the proof of Proposition 1. 
Usually the information one has at one's disposal in the 

study of models concerns the spectral density d,u(s). It is, 
therefore, convenient to translate condition (15) in terms of 
the spectral measure, i.e., of the integral 

,u(s) = i~ d,u(t) 

of the spectral density. The following statement holds. 
Proposition 2: Let n > 3. The estimate (15) holds if and 

only if there exist m > 0 and K> 0 such that 

,u(S)<KS(1I2)n-l, VSE[O,m). (33) 
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Condition (33) will be referred to as (!n - 1) -boundedness 
of the spectral measure. 

Proof: Necessity: Sinceg(t) given by (18c) is positive for 
any t>O, therealwaysexistsafunctionh(t)ECO(R1

) with the 
properties 

h(t) <g(t), VtER1
, (34a) 

h(t) = min g(t) gO>O, forO<t<l. (34b) 
0<;1<;1 

Then, due to the positivity of d,u, one has 

gaR n - 2,u(1IR 2) 

rl/R
' 

=Rn-2)0_ d,u(s)h(R 2s) 

<R n - 2 i~ 00 d,u(s)g(R 2S) = IIQR 011 2 < C 2, 

whence (33) follows on substituting l/R 2 with s in the left­
hand side. 

Sufficiency: Equation (18b) may be written in the form 

IIQROIl2=10+lm, (35) 

where 

1m = R n - 21~ 00 d,u(s)g(R 2S), (36a) 

10=R n- z1:'d,u(S)g(R 2S). (36b) 

In the same way as for J m one can prove that 1m -0, for 
R--+ 00 faster than any inverse power of R. Consider now 10 , 

Since gEcn - I(Rl) and is offast decrease, there always ex­
ists a H(t)EC1(R1) and of fast decrease, such that 
g(t) <H (t) and H' (t) < O. One can thus estimate 

10<R n - 2[ ,u(m2)H(m2R 2) - ,u(O)H(O)] 

_ R n -21:' ds Ks(1I2)n -IR 2H'(R 2S) 

=R n-2,u(m2)H(m2R 2) 

m 2R2 

+K 1- dO'O'(1I2)n-l(_H'(O'») 

<.R n - z,u(m2 )H(m2R 2) 

r+ oo 

+K )0- dO'O'°!2)n-l( -H'(O'»). (37a) 

After integrating by parts, we have used that ,u (0) = 0, 
which follows from the assumption (33). Integrating by 
parts again and going to the limit R--+oo in (37a) one gets 

10<.K(!n -1) 1~ 00 dO'O'(1I2)n- 2H(Q)<'00. (37b) 

Then (15) follows on using (35), (37b), and the decrease 
property of 1m. 

Remark 4: A sufficient condition for the validity of ( 15) 
had already been formulated in Ref. 5. It reads 

i:' d,u(s)sl-O/2)n< + 00. (38) 

We now show that (38) is more restrictive than (33). In­
deedletd,u(s) obey (38). Then in the case under considera­
tion (n>3), 
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[ 
f' ] 1/2 .;;; Jo-djl(t)t I - (1I2)n 

[ 
rS ]112 

X Jo- djl(t)t(1I2)n-1 

= (const)[jl(S)SOI2)n-l- (!n-1) 

x i~ dtjl(t)t(1I2)n- 2r12 

.,;; (const) [ jl (S)S(1I2)n - 1]112, 

where the Holder inequality and the positivity of jl(s) have 
been used. Thus we see that (38) implies (33). On the con­
trary, the spectral density 

djl(s) =a0(s)s(1I2)n- 2ds, a>O, (39) 

is easily seen to fulfill (33) and to violate (38). The example 
(39) is not merely academical. Consider the currents 

j!,- (/) = i[:cp *JI-'cp :(/) - : (J!,-cp *)cp :(/)], (40a) 

JI-' (/) = :¢r!,-t/J:(/), (40b) 

where cp and t/J are the free zero mass scalar and spinor fields, 
respectively, and : ... : stands for the standard normal prod­
uct. A simple computation shows that the spectral densities 
corresponding to (40a) and (40b) are proportional to (39). 

An example of spectral density not fulfilling (33) is pro­
vided by 

djl(s) = a~(s)ds, a>O, SE(O - E,O + E). (41) 

Remark 5: We treat here the case of two-dimensional 
QFT. In this case the two-point function to-!'-V has two inde­
pendent tensor structures, namely, 

~I-'V (p) = (PI-'PV - gl-'vP
2
)PI(P) + Ew,Evrp

U
p 'T"P2(P), 

(42) 

withEl-'v = - Evl-" EOI =J. HerepiEY'(R2
) are Lorentz in­

variant and supp Pi C V + both for i = 1 and 2. For 
jl = v = 0, the two tensor structures in (42) collapse into 
one and one gets 

~oo(p) =p2(PI(P) +P2(P»), (43) 

Now, combining the positivity of to-oo with the just-men­
tioned properties of Pi' one obtains 

~oo(p) = f djl(s)21T'0(pO)p2~(p2 - s), (44) 

dp(s) being a positive tempered measure with support in 
[0, + 00). Note that the factor p2 in the integrand of the 
right-hand side of (44) removes the arbitrariness (see, e.g., 
Ref. 8) in the definition of the ~ (p2) on the tip of the light 
cone in two dimensions. Equation (44) leads to the repre­
sentation 

IIQR OIl 2 = f~~ dp(s)g(R
2
s) +Im' (45) 

whereg(R 2S) and 1m are defined by (18c) and (36a) with 
n = 2, respectively. Now, as in Proposition 1 for J m' one 
easily finds that, for R~oo, Im~' Moreover, sinceg(R 2S) 
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is bounded, also the first term in (45) is bounded in R. 
In conclusion ( 16) holds also in two dimensions, under 

the assumptions of Proposition 1, but without any require­
ment on the behavior of pes) at s = O. This statement (see, 
also, Ref. 9) generalizes the Coleman theorem \0 on the ab­
sence of Goldstone bosons in two dimensions. We recall, 
however, that in indefinite metric and/or for translationally 
noninvariant currents, both of which violate our assump­
tions, the cited theorem, is, in general, no longer true. II 

III. CONCLUSIONS 

A recapitulation of the presented results is now in order. 
This is provided by the following chain of implications: 

Pr.! Pr.2 

( 13 )¢::( 16) ¢? ( 15) ¢? (33). 

Clearly, in general, (13) does not imply (16), but in the 
specific context of QFT we are not aware of any example 
where (13) takes place and, at the same time, (16) is violat­
ed. Concerning the implication (16)=>(15), it is a well­
known property of the weak topology in Banach spaces (see, 
e.g., Ref. 12). 

The above results and the content of Remark 5 can be 
also summarized in the form of the following Goldstone­
type theorem, which does not require locality. 

Theorem 2: Assume that the conserved vector currentjl-' 
is such that conditions (i) and (ii) of the lemma are fulfilled. 
Then the symmetry corresponding to j I-' (a) is always exact if 
n = 2; and (b) may be spontaneously broken if n > 3 and the 
corresponding spectral measure pes) is not (!n - 1)­
bounded at s = O. Otherwise the symmetry is exact. 

Propositions 1 and 2 and Theorem 2 clarify the relation­
ship between conserved currents and symmetries in field the­
ories where locality cannot be maintained on the physical 
space. Some applications of the results of this paper concern­
ing gauge theories and more general, identically conserved 
currents are given in Ref. 13. 
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New and simple proofs of duality for local von Neumann algebras in free-scalar field models 
associated with a general class of regions in Minkowski space are presented. The proofs are 
given for both the massive and massless cases and an abstract result of Araki [H. Araki, J. 
Math. Phys. 4, 1343 (1963)] is assumed. The properties of the local algebras are analyzed 
using the associated real linear manifolds. Duality is proved in the massive models using 
elementary properties of Sobolev spaces and in the massless model using dilatation covariance. 
A proof of the factor property and the cyclicity and separability of the vacuum for these local 
algebras is also given. 

I. INTRODUCTION AND STATEMENT OF THE PROBLEM 

The duality property for the local algebras of observa­
bles associated with free-scalar quantum field theories has 
been proved by several authors using a variety of techniques, 
e.g., Refs. 1-8. This paper presents a new and short proof of 
duality (independent of the Tomita-Takesaki theory) for 
local von Neumann algebras associated with regular regions 
in Minkowski space Jl4 • Proofs are given for both the mas­
sive and massless free-scalar field theories. These proofs as­
sume the "abstract" duality property proved by Araki9 and 
by Eckmann and Osterwalder. 10 Araki's proof is indepen­
dent of the Tomita-Takesaki theory/l(a> whereas, Eck­
mann and Osterwalder utilized the results of this theory. The 
abstract duality theorem states a relation between pairs of 
strongly closed real linear manifolds and certain von Neu­
mann algebras and their commutants. The proofs of duality 
for the local algebras presented here are based on an analysis 
of certain pairs of real linear manifolds in the one-particle 
subspaces of the Fock spaces for these models. 

Preparatory to the discussion of the abstract duality re­
lation and its application, let us recall the general framework 
of the Fock representation of the canonical commutation 
relations (CCR) [e.g., Ref. 11 (b)]. LetHI==L 2(R3

) be the 
Hilbert space of one-particle momentum space wave func­
tions and let ( " ) denote the inner product on HI' Let H; be 
another Hilbert space isometrically isomorphic to HI' Let 

H ~=C and for n;;.l define H ~==(; H;) , the symme-
sym 

trized n-fold tensor product of H; with itself. The Fock 
space H p with one-particle subspace H; ~HI is defined by 

H p= ® H~. The vector {l,O,O, ... }EHp is denoted by n 
n=O 

and called the Fock vacuum vector. 
The Weyl form of the Fock representation of the CCR 

on H p is given by a strongly continuous irreducible unitary 
projective representation of HI' This representation is con­
structed from the creation and annihilation operators as fol­
lows. ForfEHI, let at (f) denote the usual creation opera­
tor that is the closure of an operator defined on the dense 
domain D p of finite· particle vectors in H p. This operator is 
defined such that the map f EH 1--'>(2 t ( f) is linear and such 
that 

a) Present address: Mathematics Department, University of Toronto, Tor. 
onto, Canada M5S lAI. 

(1.1 ) 

is an isometric isomorphism. The operators at (f) and their 
adjoints, denoted by a (f), satisfy the CCR on D p. For any 
f,gEHI and t/JEDp, we have 

[a(f),at(g)]tf = (f,g)tf, 

[ a ( f ) ,a (g) ] tf = 0 . 

( 1.2a) 

( 1.2b) 

The Segal field operator c!Js [f], for each fEH l' is de­
fined to be the unique self-adjoint extension of the operator 

(1.3 ) 

definedonDp. TheunitaryWeyloperators Ws (f) for each 
fEH 1 are defined by 

Ws (f)==exp(ic!Js [J]) . (1.4) 

It is checked easily that the mapfEHIt--+WS (f) is strongly 
continuous. These unitary operators satisfy the Weyl form of 
theCCR: 

Ws (f) Ws (g) = e-ilm(f.g>ws (g) Ws (f) (1.5) 

as is verified easily using (1.2) and the definitions (1.3) and 
(1.4) . 

Each strongly closed real linear manifold (RLM) Min 
HI' can be associated with a von Neumann algebra 
A (M) CB(Hp ) defined by 

A(M)={Ws(f)lfEM}" , (1.6) 

where the double prime denotes the double commutant. Be­
cause of the strong continuity of the Weyl operators, if 
MCHI is a RLM andM denotes its strong closure, we have 

A(M) =A(M). ( 1.7) 

We associate a RLM M', called the sympletic complement of 
M, to each RLM MCHI. The manifold M' is defined by 

M'=={fllm(f,g) = 0, "gEM}. (1.8) 

It is checked easily that M' is weakly and strongly closed and 
thatM" = M (in particular, M " is weakly closed). It follows 
from the CCR (1.5) and the definition of M' (1.8) that 

A(M')CA(M)'. (1.9) 

Moreover, Araki9 has proved the following theorem. 
Theorem 1.1: LetMCHI be a RLM andM' its symplec­

tic complement. Then 

A(M') =A(M)'. (LlO) 

The relation (1.10) is what is referred to here and else-
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where in the literature as abstract duality. Araki's proof of 
(1.10) is independent of Tomita-Takesaki theory. It is 
based on the unique relationships between M CHI' H F, and 
A (M) indicated above. These relations characterize the 
Fock representation of free quantum field models regardless 
of the spin or mass of the particles. In Ref. 9 Araki estab­
lished relation (1.10) in the context of proving an isomor­
phism between a complemented lattice of RLM's in HI and 
von Neumann algebras on H F' A simpler proof of (1.10) 
was given by Eckmann and Osterwalder in Ref. 10 and in the 
unpublished work of Leyland, Roberts, and Testard7 using 
the Tomita-Takesaki theory. 

We mention that the study ofRLM's, associated with a 
von Neumann algebra with a cyclic and separating vector 
and its commutant, led Rieffel and van Daelel2 to new proofs 
of the main results of the Tomita-Takesaki theory using only 
bounded operators. 

We want to apply Theorem 1.1 to prove the duality 
property for the local von Neumann algebras in free-scalar 
quantum field models with any mass. As is well known, 
HI L 2(R3

) carries inequivalent, irreducible, strongly con­
tinuous, unitary representations of the Poincare group in­
dexed by the mass m;>O (see Ref. 13) (we consider only the 
spin-O case). The Poincare group Po=SOe (3,1) <2<T4 , is the 
semidirect product of the Lorentz group SOe (3,1) and the 
four-parameter Abelian group of translations T4~R4. We 
write (M,y) for an element of Po and Um (M,y) for the repre­
sentation on H; induced, by means of ( 1.1 ), from the repre­
sentation on HI' As is standard, we denote by r(Um (M,y)) 
the corresponding representation of Po on H F' It is obtained 
from the action of the n-fold tensor product of Um (M,y) 
with itself on H ~. Consequently, the Fock spaces HF,m for 
our models are distinguished by the inequivalent representa­
tions of Po labeled by m>O. In what follows, each free-field 
model will be labeled by some fixed m >0, but we will omit 
the subscripts for convenience. 

A free-scalar quantum field operator ¢ (x) can be con­
structed on H F, which is linear in the creation and annihila­
tion operators, local, and Poincare covariant. A standard 
form for the operator-valued tempered distribution ¢ (x) is 

¢(X)=(21T)- 3/21 dp(2OJCp»)-1/2 
(ooJ 

(1.11) 

In (1.11), we write at (p) for the operator-valued distribu­
tion defined by leHI~t (I) so that at(/) is given sym­
bolically by S (00 J dp at (p) I(p). We use the notation x~ 
==.X'4Y4 - x.y with x,yeR4 and x,yeR3

; x 2==.x.x; and 
P'X~(P)X4 - p.xwithw(p)== [ 1P12 + m2

] 112. Locality for 
the field means that for X,yeJ/4 such that (x - y)2 < 0: 

[¢(x),¢(y)] = 0 (1.12) 

in the distributional sense on D F • The field is Poincare covar­
iant with respect to the representation r(U(M,y») of the 
Poincare group on H F : 

r(U(M,y»)¢(x)r(U(M,y»)-1 = ¢(Mx + y). (1.13) 

Let tJ C R4 be any nonempty open set. Let 
J' (tJ)(J', ( tJ») denote the vector space of Schwartz test 
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functions (real test functions) with support in tJ. For 
leJ' , (R4), ¢ [ I] is essentially self-adjoint on D F and we use 
the same symbol to denote the closure. It is easy to check that 

¢ [ !] = ¢s [ F ] , ( 1.14a ) 

where 

F(P)=(21T) -3/2W (p) -1/'l(p,w(p»)eH1 , 

and] denotes the Fourier transform off 

](s,s4)=1 d 4(x)eix·'!(x). 
( ocd 

( 1.14b) 

( 1.15) 

We define another family of unitary Weyl operators W(/) 
onHF for!eJ',(R4), by 

W(!)=exp(i¢[!]) . (1.16) 

Because of (1.14a), W(/) = Ws(F) and the CCR (1.5) 
imply that 

W(/)W(g) =e-I<T(f,g>W(g)W(/), (1.l7a) 

for l,geJ' , (R4). In ( 1.17 a) the bilinear form 0': 

J',(R4) XJ',(R4).-R is defined by 

0'(1,g) = - i[¢[f],¢[g]] = Im(F,G), (1.17b) 

with F and G defined as in (1.14). Note that 0' satisfies 
O'(f,g) = - O'(g,j). 

Definition 1.2: For any tJ CR4 nonempty and open, the 
local von Neumann algebra R ( tJ) is defined by 

R(tJ)={W(/) I/eJ',(tJ)}" . (1.18) 

Two simple consequences of this definition and the 
above discussion for R ( tJ) are as follows. 

( I) Locality: if tJ I and tJ 2 are two strictly spacelike 
separated open regions, then 

R(tJ 1)CR(tJ2 ),. (1.19) 

In particular, for tJ CR4, we define the spacelike comple­
ment tJc of tJ by 

( 1.20) 

and (1.19) implies that 

R(tJC) CR(tl)' . (1.21) 
(2) Poincare Covariance: For (M,y)ePo and tJ CR4, 

r(U(M,y»)R(tJ)r(U(M,y»)-1 = R(MtJ + y) . 
( 1.22) 

The duality property studied here strengthens the local­
ity property (1.21) for suitably regular regions by asserting 
that 

(1.23 ) 

As mentioned, this relation has been proved by several auth­
ors. In this paper, we prove ( 1.23) for a large class of regions 
and for any mass, assuming Theorem 1.1. For the massive 
models, (1.23) is proved here by verifying an abstract rela­
tion between pairs of real linear manifolds in HI using ele­
mentary properties of Sob ole v spaces. For the massless mod­
el, the duality relation is established using the dilatation 
covariance of the theory. Although Araki l did not treat the 
m = 0 case, arguments similar to his were presented by Ben­
fatto and Nicolo.6 The use of the dilatation covariance signif­
icantly simplifies the proof. The argument using dilatation 

Peter D. Hislop 2543 



                                                                                                                                    

covariance given here is similar to the one used in Ref. 7 for 
the free electromagnetic field (the case of spin-I). 

The abstract duality property (1.10) is related to duali­
ty for the local algebras R ( 0' ) (1.23) as follows. Let 
R ( d) sa be the set of self-adjoint elements of R ( 0' ). Then 
the set R( d)sa!l is a RLM in H p and we set 

M(d)p= R(d)sa!l , the strong closure. LetE,: Hp~H; 
be the projection onto the one-particle subspace and define 

Mo(d)=E,M(d)p. (1.24) 

This is a strongly closed RLM in H ; , which, by ( 1.1 ), corre­
sponds to a strongly closed RLM in H, that we denote by 
M(d). The RLMM(d) CHi satisfies 

A (M(d») = R(d) . (1.25) 

From the construction of R( d) (1.18) and from (1.14), we 
obtain an explicit form for M ( d) as a RLM in H,: 

M(d) = Real span {w(p)-) /2f(p,w(p»)lfEY r (d)}, 

( 1.26) 

where the bar indicates the strong closure of the span andfis 
defined in ( 1.15). The RLM M( 0' ) corresponding to R ( 0' ) 
is unique for suppose M),M2 CHi are two RLM's such that 
A(M) =A(M2). Then from Theorem 1.1, A(M2)' 
=A(M;) and the CCR (1.5) imply that M; CM~ and 

hence, by symmetry, M; = M i so M) = M2 • 

We now can reformulate the duality condition (1.23) 
for the local algebra R ( d) in terms of its associated RLM's 
M ( d) and M ( d C 

). The abstract duality condition (1.10) 
and (1.25) imply that 

R(d)' =A (M(d»), =A (M(d)'). (1.27) 

In light of this and the uniqueness of the RLM, the duality 
condition (1.23), 

R(O'C) =A (M(d C» = R(O')' =A (M(O')'), (1.28) 

will hold if and only if 

M(O'C) =M(O')'. 

The locality condition (1.21) implies 

M(O'C)CM(O')' , 

( 1.29) 

( 1.30) 

so the reverse inclusion must be established. It is known ),7 

that this does not hold for arbitrary regions & so we will 
restrict the class of regions to those with regular boundaries 
(see below). This family will include all double cone and 
wedge regions. 

A summary of the contents of this paper is as follows. 
The duality relation is proved for the massive models in Sec. 
II and for the massless model in Sec. III. Other properties of 
the local algebras, in particular, the factor property and the 
cyclicity and separability of the vacuum, are discussed in 
Sec. IV. 

II. DUALITY FOR THE MASSIVE FREE-SCALAR FIELD 

In this section, we consider the local algebras R ( d) in 
the massive free models m > O. The proof of relation (1.29) 
between the RLM's in HI for suitably regular regions & is 
based on the following theorem. 

Theorem 2.1: Let M) and M2 be two strongly closed 
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RLM's in a complex Hilbert space H satisfying MI CM i. 
Then MI = M i if and only if M; riM i = {O}, which is the 
case if and only if each vector hEN has a unique representa­
tion of the form h = g) + ig2 withg)EM) andg2EMz. 

Proof' (a) First suppose that M) = M ~. If 
gEM; niM i = M; niM) , it follows from the definition of M' 
(1.8) that 

Im(g,ig) = IIgll 2 = 0, (2.1) 

sog = o. 
(b) Second, suppose that M ; riM ~ = {O}. If gEN is or­

thogonal to M) + iM2' then gEM; riM i, so g = 0 and 

MI + iM2 is dense in H. Let f = s-lim(h n + ign ) with 
n_oo 

hnEM) andgn EM2• Then we have 

IIhn + ign - hm - igm 112 = Ilhn - hm 112 + Ilgn - gm 112 

+ 2 Im(gn -gm,hn -hm). 

(2.2) 

Becausegn - gmEM2 and hn - hmEM)CMi, the last term 
on the right side of (2.2) vanishes and hn----+hEM), 
g n ----+gEM2' so f = h + igEMI + 1M2, This representation is 
unique for iff = h' + ig' also with h 'EM) and g'EM2, then 
(h' - h) = i(g -g')EM)niM2CM;'riM; = {O},soh' = h 
andg' =g. 

(c) Finally, let gEM ~ and write its unique representa­
tion as g = g) + ig2, g)EMI' and g2EM2' Then, for any 
h2EM2CM;, 

(2.3 ) 

so g2EiM ~ and as in (2.1) this implies g2 = O. Hence, 
g=g)EM) andM) =M~. • 

In light of Theorem 2.1 and (1.30), our strategy is to 
choose fEM( d )' riMe O'C )' and to show, for a suitable fam­
ily of regions 0' C R4, that f is indentically zero. We now 
describe the family of regions for which the proof is valid. 
We identify the time-zero hyperplane Yo ={xlx4 = O} in 

'" ]R4 with ]R3. For any open OC]R3, we define 0, the open 
causal span of 0 in ]R4, by 

o _Int{xER4
1 (x - Y) 2 < 0, V'YEO cnY o} . (2.4) 

We characterize open regions 0 C R3 in terms of a regularity 
condition of their boundary. 

Definition 2.2: An open set N C]R3 has the segment prop­
erty ifthere exists a locally finite open cover { WJ t= 0 of N 
and a set of vectors {YJt= l' YiER3, such that 

(i) WoCN, 
(ii) W;rYJN =i=¢, i;;;.1, where aN =N \N and for all 

..tE(O,l) andxEWinN, x +..tYiEN. 
We will establish (1.29) for the family Y of nonempty 

open regions & C R4 satisfying the following conditions. 
Conditions2.3: (i) tJ = 0 for some open OCR3 satisfy­

ing Int 0 = 0; (ii) the region OCR3 and -0 have the seg­
ment property. 

Remark 2.4: The first condition allows us to work with 
the time-zero fields. Specifically, let ¢o(x)=¢(x,O) and 
1To (x)=(a4¢) (x,O) be the time-zero fields which are known 
to be operator-valued distributions on ]R3 such that for any 
fEY r (R3), ¢o [ f] and 1T 0 [ f] are essentially self-adjoint on 
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D F' We define two families of unitary operators associated 
with these fields: 

U(/)=exp(itPo[f]) and V(g) =exp(i1To [g] ) , (2.5) 

for any J, gEY r (R3
). For any open OCR3, we define a von 

Neumann algebra Ro(O) by 

Ro (O)={U(/),V(g) 1/,gEYr(O), OCR3}". (2.6) 
A 

Lemma 2. 5: If tJ C R4 is open and tJ = 0 for some open 
OCR3 thenR(tJ) =Ro(O). 

The proof of this lemma is standard. 
Remarks 2.6: (1) The second condition is a mild 

smoothness property of the boundary of 0 common in the 
theory oflocal Sobolev spaces (e.g., Ref. 14). Regions satis­
fying the segment property include star-shaped sets and con­
vex sets and they may be bounded or unbounded. The fol­
lowing lemma describes a large class of regions having the 
segment property. 

Lemma 2.7: If OCR3 is open, Int 0 = 0 and ao 
= 0 \ 0 consists of a union of regular surfaces intersecting 
transversally, then 0 and -0 have the segment property. 

The proof of this is straightforward and will not be giv­
en. 

(2) Certain regions satisfying Conditions 2.3 are of par-
A 

ticular interest. When OC R3 is a sphere, 0 is a double cone 
A 

and when 0 is a half space, 0 is a wedge region. These double 
cones and wedge regions are obtained by the action of the 
Poincare group and the dilatations on the unit-radius double 
cone centered at the origin tJ 1 and the "right" wedge region 
WR , respectively. The double cone tJ I is defined by 

(2.7) 

wheree4=(0,0,0,l) and V ± are the forward and backward 
light cones, respectively, 

V ± ={xlx.x>O, X4~0}. (2.8) 

The right wedge WR is defined by 

WR =={xlx3 > Ix4 1} . (2.9) 

(3) The proof of duality for the algebra R ( tJ) with tJ 
satisfying Conditions 2.3 will establish duality for the alge­
bra associated with any region obtained from tJ by a Poin­
care transformation. This follows from (1.22). 

We first characterize/EM ( tJ ) , niM ( tJ c )' in terms of the 
support properties of the initial data of associated tempered 
distribution solutions to the Klein-Gordon equation. For 
any gElfI' we define a positive frequency solution to the 
Klein-Gordon equation by 

¢+ (g;x) = (21T) -3/2 r tip weft) -1/2e - iX·Pg(p) , Joo) 
(2.lOa) 

where xp==x4w(p) - x.p, and a real solution by 

¢(g;x) = ¢+ (g;x) + ¢+ (g;.x) * . (2. lOb) 

By a simple calculation based on (2.10) and the characteri­
zation of M(tJ) given in (1.26), it is seen that/EM(tJ)' is 
equivalent to the condition that 

f d4(X) ¢(if;x)g(x) =0, fOTall ge.Y(tJ). 
(00) 

(2.11 ) 
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Similarly, the condition ifEM( tJC)' is equivalent to the con­
dition that 

r d 4 (x) ¢(f,x)h(x) = ° for all hEY(tJC
) • 1roo) 
(2.12) 

It is well known that the tempered distribution solution 
to the Klein-Gordon equation ¢ (f,x) can be expressed as an 
Y (R3

)' -valued function of t. By using standard approxima­
tion arguments, one concludes from (2.11) that the initial 
data ¢o (if;x) and 1To (if;'X) = (a4¢ )(if;x) Ix. = 0' for tPW;x) is 
supported (as distributions) in _OCR3 where 0 = tJ. 
Similarly, one concludes from (2.12) that the initial data for 
¢(f,x) is supported in O. For brevity, let us write 

Ai (x)=¢o (g;;x) , 

Bi (X)==1To (gj;x) , 

for gl=ifandg2 f. 
With the Fourier transform of h defined by 

h(p)=(21T)-3/2 r axe-ix'Ph(x) , 
Joo) 

(2.13a) 

(2.13b) 

(2.14 ) 

the initial data (2.13) for i = 1, for example, can be written 
as 

A I (p) = iw(p) -1/2 [/(p) - (C/ )(p)] , 

BI(p) =W(p)1/2[/(p) + (C/)(p)]. 

(2.15a) 

(2.15b) 

Here, C denotes the conjugation on HI defined by 

(C/)(p) =/( -p) •. (2.15c) 

The Fourier transform of g is real if and only if g is C-invar­
~nt. Hence;..the inverse Fourier transform of the initial data 
Ai (p) and B; (p), i = 1,2, is real. The Fourier transformed 

A A A A 

initial dataA i andBi in (2.15) is simply related toA 2 andB2 

in the following manner: 
A A 

BI (p) = w(p)A 2 (p) , 
A A 

B 2 (p) = -w(p)AI(p)· 

(2.16a) 

(2.16b) 

We call these relations the coupling relations between the 
initial data. Because of the support properties of the initial 
data, for example, supp(B I ) C -0 and supp(A 2 ) CO, we 
will show that (2.16) is possible if and only if/is identically 
zero. 

The functions in (2.15) and (2.16) are not necessarily 
in HI' but their Fourier transforms (2.13) belong to certain 
local Sobolev spaces that we now describe. Let p T , 'TER, de­
note the operator defined on the dense set Y (R3

) of L 2 (R3
) 

(R3 identified with coordinate space) in the Fourier trans­
form by 

(P'i) A (M = w(p) 'f(p) , /EY(R3
). (2.17) 

Note that c(P'i) A (p) = w(py(cj) (p). The operator pT 
is essentially self-adjoint on Y(R3

) and if 7<0, it extends to 
a bounded operator. Let D(J.lT) denote the domain in 
L 2(R3

) on whichpT is self-adjoint (we use the same symbol 
for the closure). 

Definition 2. 8: H + is the Hilbert space consisting of vec­
tors in D(J.l1l2) with the inner product 

(f,g)+=(pI/2J,pI/2g) . (2.18) 
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The Hilbert space H _ is the completion of L 2CJR3
) in the 

norm 

11/1I-==11,u-1/2/112 , 

induced by the inner product 

C2.19a) 

C l,g) -=C,u - 1/2/"u -1I2g ) , C2.19b) 

for/,geL 2CJR3). 
Remark 2. 9: The multiplication operator wCp) T is posi­

tive so the inner products C2.l8) and C2.l9b) are positive 
definite. The operator ,u 1/2 on DC,u 1/2) is closed. It follows 
from this and the first inequality in C 2.20) below that H + is a 
Hilbert space. 

Lemma 2. 10: Ci)/,geH + andh,keL 2CR3) CH _, thefol­
lowing bounds hold: 

mIC/,g)I<IC/,g)+1 and ICh,kLI<m-IICh,k)l· 
C2.20) 

(ii) The map ,u I Iz is an isometric isomorphism of H + 

onto L 2(JR3) and of L 2(R3) onto H_. 
(iii) The map,u is an isometric isomorphism of H + onto 

H _ with,u -I as the inverse map. 
The proof of Lemma 2.10 is trivial. We now define some 

local Sobolev spaces. 
Definition 2.11: Let OC R3 be any measurable set with 

nonempty interior. We define subspaces H ± (0) of H ± ' 

respectively, by 

H+(O)={/l/eH+, supp(f)Clnt(O)}-, C2.2la) 

H_(O)==.{h IheH_, C,u- 1/2h,pY2j) = 0, 

C2.2lb) 

wherethebarin C2.2la) denotes strong closure. With regard 
to Lemma 2.10, we define two sub-Hilbert spaces of L Z C JR3) 
by 

K+(O) ,u1/2H+CO) , (2.22a) 

K_CO) ,u-1/2H_CO). C2.22b) 
Theorem 2.12: Let OCJR3 be any measurable subset of 

JR3 with nonempty interior. Let K ± CO) be the closed sub­
sets of L Z(JR3) defined in (2.22). Then 

K+(O)l = K_C -0) , (2.23a) 

C2.23b) 

Proof: Ca) We will use Lemma 2.10 repeatedly. Note 
that gEK+CO)1==[,u1/2H+CO)]l if and only if 
,u I 12gE [,uH + CO) ] 1 with the latter orthogonal complement 
taken in H_. Now kEH_C-O) if and only if 
(,u- I/zk,,u1/2/) = 0, for allfEH+ (0). This is the case if and 
only if (k"uj) _ = O. Hence, 

,ul/2gELuH+(0)F =H_(-O), 

sogep-1/2H _ (-0). 
(b) Because [,u1/2H + (0)]1 = ,u1/2[H + (0)]1 and be­

cause of part eii) in Lemma 2.10, condition (2.23a) is equi­
valent to 

(2.24) 

with the orthogonal complement in H +. Taking the ortho­
gonal complement of both sides of this expression in H _ and 
recalling part (iii) of Lemma 2.10, we obtain 

(2.25 ) 
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Upon replacing 0 by -0 in (2.25) and using part (ii) of 
Lemma 2.10, we obtain (2.23b). • 

We now return to the initial data Ai and Bi (2.13) for 
the solutions to the Klein-Gordon equation ¢(if;x) and 
¢(I;x) associated with/EM(&)'niM(&C )'. We show that 
this data belongs to the spaces H ± (0) and H ± (-0). This 
will require that we use the second part of Conditions 2.3 and 
Lemma 2.7. 

Lemma 2.13: Let Ai and Bi be as defined in (2.13). 
Then 

(i) A I and A2EH + and are real, (2.26) 

(ii) B I and BzeH _ and are real, (2.27) 

(iii) AtEH+(-O) and A2eH+(0) , (2.28) 
(iv) BteH_(-O) and B2eH_(0). (2.29) 

Proof: C a) Parts (i) and (ii) follow directly from Defini­
tion 2.8, formulas (2.15) and (2.16), and the C-invariance 
of the Fourier transforms of these functions. 

(b) We first show that A2EH + (0). It was proved that 
supp(A z) CO so we show that A2 can be approximated by 
functionsinH+ with support in Int(O). Let{WJ::o be the 
locally finite open cover of 0 and {yJi"= I the associated 
vectors guaranteed to exist by the segment property for 0, 
Definition 2.2. Let {j; }i"= 0 be a partition of unity dominated 
by the open cover {WJ:: 0 and set A 2 (x) = 1::: oA 2,;C.X) 
with A 2•i ==A 2 /;. It suffices to show that each 
A2,i (x)eH+ (0). For i = 0, WaCO so supp(A2,a) CO and 
A2•0 eH+(0). For i;;d, the function A L (x) AZ,i(X - tYi) 
has support in {X + tYilxEWinO}CO, for tE(O,I) by the 
segment property. Since translations are unitarily imple­
mented in H +' A ~,iEH + (0). Moreover, we have 

IIAz,i - A ~,i 112+ = ( lip w(p) Ie - itytP - 1121.42,; (p) 12 , J( 00) 

(2.30) 

which converges to zero as t---+O by the dominated conver­
gence theorem. Hence, AZ,i EH + (0). The proof that 
AIEH+( -0) is similar since supp(A I) C -0 and -0 has 
the segment property by Conditions 2.3. 

(c) To prove (2.29), recall that for any leH + (0) there 
exists a sequence {In}CH+(O) such that suPP(ln) 
Clnt(O) andf,,-+/inH+. Since supp(B t ) C -0, we have 

(,u- t/zBt,,u
t/2/) = lim (,u- t/2Bt,,ut/zl

n
) 

,,~oo 

= lim B t [In] = 0 , (2.31 ) 
n~oo 

where B I [In] denotes the distribution B t evaluated at In . 
Hence, B IEH _ ( - 0). The prooffor B2 is similar. • 

Theorem 2.14: If/EM(&)'niM(&C)', where O'CJR4 

satisfies Conditions 2.3, then I = O. Consequently, the von 
Neumann algebra R ( O') defined in ( 1. 18) for m > 0 satisfies 
the duality relation 

R(O')' =R(O'C). (2.32) 

Proof: From the coupling relations (2.16), we have 

,u-1/2B I =,u1/2Az , 

,u-I/ZBz = _,uI/ZA I · 
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Lemma 2.13 and Definition 2.11 (2.22a) indicate that 
p,1/2A2eK+ (0), whereas p,-1/2B1eK_( -0). Consequent­
ly, by Theorem 2.12 (2.23a), A2 = 0 = BI and! = - Cf 
Similarly, we have p,-1/2B2eK_ (0) and p,1/2A 1eK+ ( -0) 

so Theorem 2.12, (2.23b), and the coupling relation (2.33b) 
imply that B2 = 0 = A I andf = Cf Hencef = O. • 

III. DUALITY FOR THE MASSLESS FREE-SCALAR 
FIELD 

Relation (1.29) is established for the m = 0 case using 
the dilatation covariance of the model. In this section, we fix 
m = 0 and write k =(k,K), K=lk I, for a lightlike four-vec­
tor. The dilatation group on HI is the representation of the 
multiplicative group of the positive reals given by 

(UJ)(k)-==A 3/2f()'k), ).eR+. (3.1) 

It is easy to check that this defines a strongly continuous 
unitary representation. We consider a corresponding family 
ofautomorphisms of Y(R4) defined by 

f(x).-h (x)-==A -3f(). -IX), ).eR+. (3.2) 

Note that for any feY(R4) we have <p[fA]n 
= <Ps [UAF] n, where <Ps and Fare defined in (1.14). 

For any & CR4, let & A denote the set {).xlxe&}. Then 
the automorphisms defined in (3.2) implement the scaling: 

Y(&)'-YA (&)={fA IfeY(&)} = Y(& A) . (3.3) 

In particular, for regions of the form & = &, OCR3
, as dis­

cussed in Condition 2.3 and (2.4), we find 

'" Y A (&) = Y(OA) , (3.4) 

where 0 A =={).x IxeO}. In this section, we restrict our discus­
sion to those nonempty open regions & C R4 belonging to the 
set of regt' ons Yo satisfying the following conditions. 

A A 

Conditions 3. 1: (i) & = 0 for some open OCR3 with 0 
defined in (2.4); (ii) OCR3 satisfies the scaling property 

OA CO, ).e(O,l), and lim OA = O. Condition 3.1 (ii) will 
A~I 

allow the approximation of functions in YeO) by those in 
Y (0 A ) in an appropriate norm. 

A general class of regions satisfying Condition 3.1 (ii) 
with C = 1 consists of regions which are star-shaped with 
respect to the origin. This set of regions includes double 
cones whose base 0 is a ball centered at the origin. 

We remark that the methods outlined below extend to 
other regions provided that they possess a scaling property 
similar to Condition 3.1 (ii) and that the field is covariant 
with respect to this scaling. For example, we consider the 
right wedge WR and the scaling by translations in the X3 

direction. For)' > 0, set 

WA={xlx3 -).> Ix4 1} = WR +).e3' 

The base in R3 is WO,A = {xlx3>).}andlimA~ WO,A = WR • 

Let & eY 0 and let R ( &) be the von Neumann algebra 
defined in Definition 1.2 with m = O. We define three 
strongly closed RLM's in HI' for ).e(O,l), associated with 
the algebras R(tli ),R(tli )', and R(& A)' respectively, by 

Ko()')===M(tli) , (3.5a) 

K i ().) K o ().)', (3.5b) 
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(3.5c) 

where M(tl) is defined in (1.26). Note that (tlch 
=(tlAY. 

The results of Bisognano and Wichmann 15 suggest that 
Ko ().), the RLM associated with the "outside" algebra, and 
Ki ().) are the appropriate pair of RLM's to study. From 
Theorem 1.1, the duality relation (1.23) will be established 
by showing that Ri ( 1) = Ki ( 1 ). By locality, Ri ().) CKi ().) 
and we will show that Ki ().) CRi (1). We first characterize 
the elements of Ki ().) and, second, we show how these ele­
ments can be strongly approximated by elements in Ri (). ') 
for slightly larger). '. 

We associate with eachfeRl a classical positive frequen­
cy solution to the wave equation as in (2.lOa) with w(p) 

replaced by I" I==K and x-p by x·k =='X4K - x.k. The corre­
sponding real solution is constructed as in (2.lOb). 

Lemma 3.2: feKi ().) if and only if the real solution to 
the wave equation constructed from - if as in (2.10) van­
ishes as a distribution for all xe (0 A ) c. 

Proofi For any geY(R4) writeg gl + ig2 withgj real. 
A simple calculation shows that 

.! r d 4(x) <p( - if;x)g(x) = Im(G1,j) + iIm(G2,j) 
2 J",) 

(3.6a) 

with 

G
j 
(k)=(21T) -3/2(K) -1I2gj (k,K) . (3.6b) 

If feK j ().), then the right side of (3.6a) vanishes for all 
geY( (OA n. Conversely, if the left side vanishes for all such 
g, then.feKo().)' since the elements of the form (3.6b) are 
dense in Ko ().). • 

We replace eachfeKj ().) by an approximation function 
such that the initial data for the corresponding real solution 
<p is smooth. Let ceY(R3) be a smooth non-negative func­
tion supported in the unit ball integrating to 1. Set 
c

E 
(X)=€-3C(€-IX), €> 0, and J: (x)==cf*cE )(x) with f 

defined by 

f(x)=(21T)-3/2 r dk/kY(k) , (3.7) J",) 
forfeR1• Obviously, 

h = (21T) 3/2fcE eL 2(R3 )nL I(R3
) • 

Lemma 3.3: LetfeKj ().). 

(i) <p( -ih;x) =0 for all xe(OA +BE(O»)C, where 
BE (0) is the ball of radius € centered at the origin. 

by 
(ii) The initial value data (lVD) for<p( - ih;x) is given 

<Po ( - ih;x) = (cE * <p[)(x)=hl(x) , 

1To ( - ih;.x) = (cE * 1T[) (x)=h2(x) , 

( 3.8a) 

(3.8b) 

where <pt and 1Tt are the IVD for <p ( - if;x). The functions hI 
and h2 are real elements of COO (R3) supported in 
OA +BE(O). IfOis bounded, h l,h2EY(R3

). 

Proofi Part (i) follows from Lemma 3.2 and the con­
struction ofh. The form of hI and h2 is obtained by trivial 
calculation. It is clear that these functions are COO • If 0 is 
bounded, they have compact support. The Fourier trans­
forms of h I and h2 are 
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h/k) = -i(21T)3/2(K)-1/2[f(k) - (Cf)(k)]cE(k) , 

(3.9) 

h2(k) = - (21T)3/2(K)1/2[f(k) + (Cf)(k)]cE(k) , 

(3.10) 

where C is defined in (2.15c). Since h I and h2 are C invar­
iant, the functions h I and h2 are real. • 

If the region 0 is unbounded, we must approximate hi 
and h2 by smooth functions of compact support in 
0). + BE (0). The following lemma provides a sufficient 
means of approximation. We extend Definition 2.8 to the 
massless case and define Hilbert spaces H ± to be the com­
pletion of Y(R3

) in the norms 

Ilfll2± ==1 dkK±llf(k)12 . (3.11) 
(00 ) 

Lemma 3.4.: Let hEg r (R3
), supp(h) CBI (0), h>O, 

andh(x) = 1, for Ixl <!. Sethu(x)=h(oX). ForfEH_ and 
gEH +, setfu=huf, gu=hug· ThenfuEH _, guEH +,fu, and 
goo have compact support, andfu-J, gq-+g weakly as 0"-0 

in H _ and H +, respectively. 
Proof' (a) By a straightforward calculation (e.g., Ref. 

6), it can be shown that for 1JEY(R3) andfEH+ there is a 
constant K." ;>0 such that 

111lf11+<K."IIfII+, (3.12a) 

and for hu as above, 

IlhJII+<Kllfll+ , (3.12b) 

with K independent of 0". The dual space of H + is naturally 
isomorphic to H _ by the pairing 

TEH _,fEH +: T [f] = (,uo- 1/2 T "u!/2 f) , 

where (,u:f)A (k)==K'l(k). Note that 

IT [f] <IITII-lIfll+ . 

(3.13a) 

(3.13b) 

For 1JEY(R3) and TEH_, it is easy to check that 1JTEH_ 
and forfEH+, 

1JT[f] = T[1J*f] . (3.14a) 

Consequently, from (3.12a) and (3.13), 

I1J T [f] I<K.,,·IITII_lIfll+ , (3.14b) 

so it follows that 

(3.14c) 

and multiplication by Y (R3
) is continuous on H _. Apply­

ingthistohq , it follows from (3.12b) and (3.14) that 

IlhuTII-<K IITII- . (3.15) 
(b) Letgu=l - hu' For h, {EY(R3

), we have 

(h,gu/')- = ~f dxdjih(x)*lx-yl-2gu(y)t{y) , 
21T (00) 

(3.16) 

and I (h,gu/'L 1<(1 +K)lIh 11_11/'11_ by (3.15). Since 

H(Y)==f dXlx - yl-2h(x)*EL 2(R3 )nC 00 , 

(00 ) 

t'HEL I(R3 ) • 

Since goo I t'H 1< I t'H I, it follows from the dominated conver-
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gence theorem that lim (h,gq /') _ = 0.1t is easy to show that 
00-..0 

weak convergence follows from this, the bound (3.15), and 
the density of Y(R3

) inH_. 
(c) Finally, for any TEH_ andfEH+, we have, from 

(b), 

lim guT [f] = lim (guT"uJL 
00-..0 00-..0 

( 3.17) 

Since ,uo- I: H _ -H + is an isomorphism, goof converges 
weakly to zero in H +. • 

Lemma 3.5: (i) The strong limit as A_I of K; (A) is 
K;=K;(l). 

(ii) For any AE(O,l) we have 

K;(A)CR;(1)CK;, (3.18) 

i.e., K; = R;(l). 
Proof' (a) We have the formula Ko (A) = U).Ko (1) 

from the dilatation covariance of the field and the strong 
continuity of U).. For definition (3.5b), we have 

( 3.19) 

which proves (i). 
(b) For AE(O,l), we can choose €>O such that 

0). + BE (0) COl' By the analog of Lemma 2.5 for the 
m = 0 case, R; (A) is the closure of real linear span of func­
tions of the form iKI/2h(k) and K- 1/2g(k) with g, 
hEY r (0). ) . We first suppose 0 is bounded. Choose any 
fEK;(A). From Lemma 3.3, the IVD hi and h2 for the real 
solution 4>( - ifE;X) belongs to Yr(O). + BE(O»). Hence, hi 
and h2 can be used to smear the time-zero fields: 

4>0 [h2 ] = (21T) - 3/21 dk(2K) -1/2h2(k)at (k) , 
(00 ) 

(3.20a) 

1To[hd =i(21T)-3/21 dk(~)1/2 hl(k)at(k) , 
(00) 2 

(3.20b) 

so K-1/2h2,iKI/2hIER;(1). From the form of hi and h2 in 
(3.9) and (3.10), it follows thatf(k)cE(k)ER;(1). Since 
this function converges strongly tOJ,fER; (1). 

(c) If 0 is unbounded, defineh l •u andh2•u as in Lemma 
3.4. In particular, hl.u,h2.uEg rHO). + BE (O»)nBu (0») and 

1/2A I/2 A 

K hl,u,K- h2,uEHI' Given any gEHI' we have 

(3.21 ) 

by Lemma 3.4, where G ==,uo- 1/2 gen +. Consequently, 
w-limu-..o KI/2 hi 00 = KI/2 hi in HI' A similar calculation es­
tablishes that w-llmu-..o K- 1/2 h2.u = K- 1/2 hz in HI' It fol­
lows from the argument in part (b) that 
iKI/2 hl.u,K-1/2 h2.u ER; (1). Sipce the R]-M R/ (1) is weakly 
closed in HI, we obtain iKI/2 hi' K- 1/2 h2ER; (1) and hence 
JER; ( 1) as above. • 
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Theorem 3.6: If tJ C R4 satisfies Conditions 3.1, then the 
RLM's M(t1c), and M(tJ), defined in (3.5), are equal. 
Consequently, the von Neumann algebra R (tJ) defined in 
( 1.18) for m = 0 satisfies the duality relation 

R(tJ)' = R(tJC) . 

IV. OTHER PROPERTIES OF THE LOCAL ALGEBRAS 

We now discuss some other properties of the local alge­
bras, namely, the cyclic and separating properties of the 
vacuum and the factor property. Returning to the general 
setting of Sec. I, we formulate these properties in terms of 
real linear manifolds in HI' 

Theorem 4.1: Let M and M' be a complementary pair of 
strongly closed RLM's in HI and letA (M) and A (M') be the 
associated von Neumann algebras on H F as in (1.6). Then 
we have the following. 

(i) n is cyclic and separating for A (M) [and hence for 
A(M)' =A(M')] if and only if MniM = {a} = M'niM'. 

(ii) A (M) is a factor if and only if MnM' = {O}. 
Proof: (a) Let Ml be the complex orthogonal comple­

ment of M in HI' It is easy to show that Ml = M'niM'. 
Similarly, one shows that (M')l = MniM. Consequently, 
the condition in (i) guarantees the cyclicity of n for A (M) 
andA(M)', and hence the separability. 

(b) We note that for strongly closed RLM's M I , 

M 2CHI, it is easy to show that A(MI +M2) 
=A(MI ) VA(M2), where MI + M2 is the real linear span 

of all elements in MI and M2 [see (1.7)]. The center of 
A(M) is A(M)nA(M)' =A(M)nA(M')=Z(M) by 
Theorem 1.1. Since 

(A(MI ) VA (M2»), =A (MI + M 2 )') 

and 

(MI +M2)' =M;nM~, 

we obtain 

Z(M) = (A (M)n.4(M'»)" = (A(M) VA(M'»)' 

=A (M +M')') =A(MnM') 

and the result follows. • 
Theorem 4.2: Let & EY for m > 0 or tJ EY 0 for m = 0 

and further suppose that tJc is nonempty. Then the vacuum 
vector n is cyclic and separating for R ( ty ) . 

Proof: Let/EM(tJ)niM(O'), where M(tJ) CHI is the 
RLM constructed in (1.26). Let ¢ + (/;x) be the positive 
frequency solution associated with/ as in (2.lOa) [replace 
UJ(p) by !PI for m = 0]. By an argument similar to that in 
Sec. II, we conclude that for any gE.Y (tJc ): 

r d 4 (x)¢(i!;x)g(x) = 0 = r d 4 (x)¢(f;x)g(x) , 
J100l J100 l 

(4.1 ) 

and consequently, 4> + (/;x) = 0 for XEtJc as a distribution. 
Now ¢ + (/;x lis the boundary value of a function analytic on 
T _; ={x - iylxER4, YE V +} so by the edge-of-the-wedge 
theorem, 16 ¢ + (/;x) = 0 everywhere which implies/ = O. A 
similar argument applies for 

M( ty) 'niM( tJ)' = M( tJc )niM( tyc ) 
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(by duality) so by Theorem 4.1 part (i) the result follows. • 
Theorem 4.3: Let tJ EY for m > 0 or tJ EYo for m = O. 

A 

Then tJ = 0 and assume that the Lebesgue measure of 
ao = 0 \ 0 is zero. Then R (tJ) is a factor. 

Proof: (a) Let/EM(tJ)nM(tJ)' =M(tJ)nM(tJC) by 
duality. It follows by arguments similar to those leading to 
(2.11) and (2.12) that (regardless of the mass) 

r d 4 (x)¢(if;x)h(x) =0, VhE'y(tJ)U'y(tJC) , Jool 
(4.2) 

and hence the distribution ¢(if;x) is supported in atJ. The 
IVD for ¢(if;x), denoted by ¢o (if;x)==h I (X) and 11'0 (if;x) 
==h2(x), is supported on ao, where tJ = 0, and has the 
form 

hl(p) =iUJ(p)-1/2[/(p) - (C/)(p)] , 

h2(p) =UJ(p)1/2[/(p) + (C/)(p)] , 

(4.3a) 

(4.3b) 

where here and below p=!P1 replaces UJ(p) for m = O. It 
follows that h I Ell + and h2Ell _ and that h I and h2 are real 
tempered distributions supported in ao. 

(b) Let..@"=.Y(O) + .Y(Int(-0»)CL 2(R3
). We de-

A 

note by..@" the subspace of Fourier transformed functions in 
HI' Since the Lebesgue measure of ao =0 \ 0 is zero, stan­
dard arguments show that..@" is dense in L 2 (R3

) (and hence 
A 

..@" is dense in Ht ). Let ge..@" so that by considering hi> 
i = 1,2, as real tempered distributions supported in ao: 

0= h; [g] = r tip h; (p)*g(p) 
J100l 

= r tip UJ(p)±1I2h;(p)*[UJ(p)+1I2g('P)] , 
Jool 

(4.4) 

where we choose the upper signs for i = 1 and the lower for 
i = 2. We show UJ ± 1/2h; = 0, so / = 0 and the result then 
follows from part (ii) of Theorem 4.1 

( c) The operators (multiplication by) UJ ± 112 are self-
A 

adjoint on their natural domain in HI and..@" is a core for 
A 

these operators. We show that Ran(UJ ± 112 ~ ..@") is dense in 
HI so that from (4.4) we conclude UJ ± 112h; = o. If 

A A 

IERan (UJ ± 1/2 ~ ..@")1, then /Eker[ (UJ ± 112 ~ ..@") * ]. Since 
(UJ ± 112 ~ ~) * = UJ ± 112 on its natural domain, 
IIUJ± 1121'11 = 0 so 1'= O. • 

Corollary 4.4: If tJ = R4, thenR(R4) =B(HF ). 

Remark 4.5: Theorem 4.2 also follows from an applica­
tion of the Reeh-Schlieder theorem 16 to the models studied 
here since the local algebras are generated by the free fields. 
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The local polynomial cohomology space of the Yang-Mills BRS operator in four dimensions is 
computed. In order to simplify the analysis, without omitting the physically interesting cases, 
the investigation is limited to polynomials whose Fadeev-Popov charge and UV naive 
dimensions have upper bounds. Furthermore the results are used to compute, a la Stora, the 
local functional Yang-Mills anomalies, from which the uniqueness of the Adler-Bardeen­
Jackiw anomaly follows. 

I. INTRODUCTION 

The Yang-Mills (YM) modeP has been proposed atthe 
very origin of relativistic quantum field theory (QFf) as a 
contact point of quantum mechanics and geometry, in order 
to try a unification of nuclear forces. 

This initial idea proved quite fruitful in the unification 
program of weak and electromagnetic forces, and it encour­
ages hopes of getting, in the near future, a scenario in which 
all the physical interactions will be described by a single the­
ory. 

However, in the last decade the necessity has emerged of 
adopting the language of differential geometry within the 
QFf framework. One of the most important steps in this 
direction was the Becchi-Rouet-Stora (BRS)2 treatment of 
gauge theories, which outlined the cohomological aspects of 
the renormalization program and emphasized the need for a 
systematic approach to the computation of the cohomology 
spaces of the BRS differential operators. 

Much work has been done in this direction,3 but no gen­
eral treatment has, up to now, appeared in the literature. 

In this paper we investigate the cohomology space of the 
YM semisimple models following the method of the spectral 
sequences, first introduced in QFf by Dixon,4 and later re­
fined by Bandelloni. S 

We shall obtain explicitly the cohomology space of the 
BRS operator in the class oflocal polynomials, already first 
found by Joglekar and Lee. 3 

Furthermore we treat the problem of the BRS cohomo­
logy in the class oflocal integrated polynomials (local func­
tional space) and the uniqueness of the Adler-Bardeen­
Jackiw gauge anomaly is recovered. 

In Sec. II we shall focus the problem and recall some 
notation. 

In Sec. III we shall solve the BRS local polynomials 
cohomology. 

In Sec. IV we use the results of the previous section to 
solve the local functional cohomology. 

Appendix A is devoted to a fast guide to spectral se­
quences techniques. 

Appendices B, C, and D contain technical aspects of 
results given in Sec. III. 

II. THE PROBLEM AND SOME NOTATION 

Let us consider a semisimple pure Yang-Mills model in 
a four-dimensional space based on a connection A ; (x) with 
UV dimensions equal to 1 and a dimensionless Fadeev-Po­
pov (<<1>11) ghost anticommuting field ca(x) obeying the 
BRS infinitesimal transformation laws 

t5A;(x) = [allca(x) +jabcA!(x)CC(x)] 

= [D;bCb(X)] , 

t5ca(x) = - [~rbcCb(x)Cc(x)] , 

with 

r bc rdgCb(x)Cd(x)cg(x) = 0, 

jabc jabd = C(2)/2t5cd , 

(2.1) 

(2.2) 

(2.3a) 

(2.3b) 

and the field ca(x) carries a «1>11 charge equal to 1, while the 
connection A; (x) is «1>11 neutral. 

The above transformation laws lead to the nilpotent dif­
ferential operator 

8=f d4x [DabC b(x) 8 
Il t5A; (x) 

_..!.. rbcCb(x)CC(x) t5 ] , (2.4) 
2 t5C a(x) 

which, at the classical level, defines the symmetric polyno­
mial action functional reI satisfying the Slavnov identity 
8rcl = o. The renormalization program consists of finding, 
at an arbitrary order of the loop perturbative expansion, an 
action functional that maintains the gauge symmetry. 

If one tries to implement this program with counter­
terms derived through a subtraction procedure, one realizes 
that the Slavnov identity is modified into 8r = A 1 and 
anomalies A I = SA! (x) appear [such that t5A 1 = 0 and 
A! (x) is a local polynomial with «I> II charge equal to 1 ] and 
the consistency condition 8A! (x) + dA~ (x) = 0 holds. 

As pointed out by Stora,6 if we label with p the value of 
the «I> II charge, we can, in general, characterize the charged 
p cohomology sector by the system 

8AHx) +dA~+I(X) =0, (2.5a) 
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(2.5b) 

8M+ 2(x) +d~1+3(x) =0, (2.5c) 

8~1+ 3(X) + d~g+4(x) = 0, (2.5d) 

8~g+4(x) = O. (2.5e) 

In particular the case p = 0 corresponds to the class of the 
Lagrangian densities, and if p = 1 we find the anomalies sec­
tor. 

Moreover the validity of the quantum action principle 
limits the dime.nsionality of the anomalies, and the sectors 
with a physical relevance are those with p = 0,1. 

For this reason we are interested here in the cohomology 
classes satisfying the conditions 

(dim + Q<I>II )~~(x)<5~~(x) , (2.6a) 

(2.6b) 

where dim is the naive dimension counting operator, and 
Q<I>II is the <l>rr charge operator defined by 

dim ~~(x) = r~~(x) , 

Q<I>II ~~(x) = p~~(x) . 

(2.7a) 

(2.7b) 

We shall follow the general strategy of solving first the 
equation 8~~ (x) = 0 for generic p and r. 

Notice that a more rigorous treatment requires the in­
troduction of classical external fields (with negative <l>rr 
charge) coupled to 8A: (x) and 8C a(x). 

For the sake of computational simplicity here we shall 
avoid this step; however, it can be proven that for p = 0,1 
these fields do not contribute to the cohomology spaces. 

III. SOLUTION OF THE BRS LOCAL POLYNOMIALS 
COHOMOLOGY 

In this section we solve the equation 

8~~(x) = L [[Da(n)(aJLca(x) +rbcA!(x)CC(x»)] 
n 

a x-----
aDa(n) A: (x) 

-..!. [D (fabcCb(X)CC(x») 2 a(n) 

X a ]]~~(X)=o, (3.1) 
aDa(n) ca(x) 

where ~~ (x) is a local polynomial obeying the constraints 
[Eqs. (2.6)], and 

Da(n) A: (x) = aa(l)aa(2) ..• aa(n) A: (x) . 

It is well known that the most general solution has the form 

~~(x) = X~(x) + 8~~-I(x) , (3.2) 

with ~~ - 1 (x) arbitrary and X~ (x) is the general element of 
the cohomology space B(8) for the operator 8. 

We compute the space B (8) using the spectral se­
quences method, introduced by Dixon,4 to which Appendix 
A is devoted. 

This method allows us to calculate B(8) by successive 
approximations, defined (up to isomorphisms) by a se­
quenceofspacesB(d(s») (s = 0,1,2, ... ), where the operators 
des) are induced by the filtration 8(s) of the operator 8 ob­
tained by means of a self-adjoint operator v as 

[v,8] = L s8(s) . (3.3 ) 
s=O 

However, the construction of the operators des) is not 
straightforward and the isomorphisms are not obvious; the 
first difficulty is overcome by showing that the system 

8(s) x~(x) = 0, 
- s = 0,1,2,3, ... , 

8+(s)~~(x) =0, 

( 3.4a) 
(3.4b) 

will also identify the space B(8), up to isomorphisms, as 
shown in Ref. 5, where it is also found, by studying the local 
polynomials diffeomorphism cohomology, that a filtration 
induced by the counting operator of the ghost fields and their 
space-time derivatives reduces the isomorphism to the iden­
tity. 

This result, which was interpreted there as an accident 
(for the isomorphism in general depends "a priori" on the 
differential null square operator, too), is proved to hold in 
the present case, too. This occurrence brings into doubt that 
this is not an accident, but a general property due to the 
particular filtration. Anyhow, we are not able to give any 
argument in support of this conclusion. 

We shall use here the same derivative notation as in Ref. 
5 (instead of the one employed by Dixon) ; so we shall define 
an adjoint operator by the procedure that replaces mono­
mials in the fields and their space-time derivatives with the 
partial derivatives with respect the same quantities and vice­
versa. As counting operator we shall use 

v = L (1 + n)Da(n) Ca(x) a (3.5) 
n=O aDa(n) Ca(x) 

and the filtration of the operator 8 gives the results 

~(1) " fabc[CC(X)D A b (x) a -..!. [Da(n) (Cb(X)CC(x»)] a a ] , 
U = £.. a(n) JL aD A b () 2 aDa(n)C (x) n=O a(n) JL X 

(3.6a) 

(3.6b) 

(3.6c) 
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and their adjoints 

15+ (1) = L [jabe[Da(n) A; (x) a b a - ..!.Da(n) Ca(x) a ]] , 
n=O aDa(n) A I' (x) acC(x) 2 aDa(ndCC(x)Cb(x») 

(3.6d) 

15+(2) = [A; (x) + L njabcaI'Da(n_1) A ~(x) aD a A b ( )] aa :a( ) , 
n=O a(n-I) v X I' X 

(3.6e) 

15+ (s) = L [C n )rbeDa(n) A ~ (x) a b] a 
n=O -1 aDa(n_s+1) Av(x) aDa(s_I)CC(x) 

+ D ( 2) A a (x) a (s = 3,4, ... ) . 
a s- I' a,n a ca( ) (3.60 

Lo'a(s-2) I' X 

Now we have to find the functions K~(x), which are solu­
tions of the systems 

15(1) +K~(x) =0, 

I5t(1) K~(x) =0, 

15(2) K~(x) =0, 

I5t(2) K~(x) = 0, 

l5(s) K~(x) = 0, 

I5t(s) K~(x) =0, s>2. 

(3.7al) 

(3.7a2) 

(3.7bl) 

(3.7b2) 

(3.7cl) 

(3.7c2) 

With a short algebra it is easy to see that 152 
( 1) = 0 so 

thesysteminEq. (3.7) identifies the cohomology H(I5( 1») of 
the operator 15 ( 1 ), since the whole space F admits the Hodge 
decomposition 

F= 1m 15(1) + Iml5t (1) +H(I5(1») (3.8) 

and the spectral sequences method is at our disposal to find 
the functions that belong to H (15 ( 1 »). The detailed analysis is 
carried out in Appendix B and the result is that the functions 
K~(x) satisfy 

a Kp(x) = 0, (3.9) 
aDa(n) Ca(x) , 

for n > 1, ifK~(x)eH(I5(1»), 

i.e., they do not depend on the ghost field space-time deriva­
tives of order greater than 2; and the following conditions 
hold: 

g'"(1) K~(x) = 0, 

h C(1) K~(x) =0, 

where 

g'"(l) = L jabe[Da(n) A! (x) a a 
n =0 aDa(n) A I' (x) 

+ apCb(x) a ] , 
aapca(x) 

h C(1) =rbeCb(x) a , 
aca(x) 

(3.lOa) 

(3.lOb) 

(3.lla) 

(3.llb) 

which imply that the functions K~ (x) have the form 

K~(x) = I( A ~ (x),Da(n) A! (x);apCC(x»)T(Cd(x») , 

(3.12) 

with I( A ~ (x).Da(n) A! (x);apCC(x») and T(Cd(x») in-
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variant under g'"( 1) and h C( 1), respectively. 
The power counting conditions in Eqs. (2.7) suggest the 

decomposition 

I(A; (x).Da(n) A !(x);apCC(x») 

with 

= I(A; (x).Da(n) A !(x»), + apCa(x)I t( A ~ (x), 

Da(n) A! (x») + apca(x)auCb(x) 

XImA~(x).Da(n) A !(x»), (3.13 ) 

dim I( A; (x).Da(n) A! (x»)<5I(A; (x).Da(n) A !(x»), 

(3.14a) 

dim I~( A ~ (x),Da(n) A ! (x»)<3I~( A ~ (x).Da(n) A! (x»), 

(3.14b) 

dim I~:(A ~ (x),Da(n) A ~ (x»)<I~:(A ~ (x).Da(n) A ~ (x»). 

(3.14c) 

A very elementary argument that we shall use repeated­
ly eliminates the dependence of I( A; (x),Da(n) A! (x); 
apCC(x») from the function I~:( A ~ (x),Da(n)A d(X»). In­
deed the condition (3.14c) implies the form 

apCa(x)auCb(x) I~(A ~ (x).Da(n) A ~ (x») 

= [O~A~(x) +o~:]apca(x)auCb(x). (3.15) 

Now, the above expression must be a Lorentz scalar and 
a global gauge invariant, so we get 0':[, = l5ab l5 PU, and the 
impossibility of building a Lorentz-invariant tensor with an 
odd number of indices in four dimensions implies 0 ~ = o. 

Furthermore a detailed analysis of the equation 
I5t(2)K~(x) = 0, carried out in Appendix C, eliminates the 
term apca(x)I~( A ~ (x).Da(n) A ~(x»). 

Now the polynomial I(A; (x).Da(n) A !(x») (which 
has UV naive dimensions <4) has the general expression 

I( A; (x).Da(n) A! (x») 

= L ;';'1r A; (x) A ! (x) A; (x) A ~ (x) 

+ M~':pu A ~ (x) A! (x)ap A ~ (x) 

+ R ~~ al'av A; (x) A! (x) + T~vpual'avap A ~ (x) 

+ N~~al' A ~ (x)ap A! (x) + S~v al' A ~ (x) 

+R~~A~(x)A!(x) +K, (3.16) 

h K · ta t dL abed Mabe Nab sa R ab were IS a cons n an I'vpu' I'vpu' I'VPU' I'v' I'vpu' 
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R ~~, and T~vpq are tensors invariant under Lorentz and 
global gauge transformations separately, and the terms in­
volving tensors with odd numbers of Lorentz indices are not 
included since they obviously vanish. 

The global gauge invariance now enforces T~vpu = 0 
and S~v = 0 (since they have only one index in the gauge 
group) and 

R ab ,~~ab 
/W = ru!-'vu , (3.17a) 

N~~pq = 8ab(m!-'vpq) 

= 8ab(a8!-,v8pq + b81-'P8vu + c8!-,u8vp + dE!-'vpu) . 

(3.17b) 

Now the equation 8(2) A~(x) = 0 implies the condi­
tions R ~~pu = 0, since this tensor appears in the coefficient 
of the sole term containing a second-order derivative in the 
gauge field, and 

4L abed +farb'Mrcd 0 
J.Lvpu p.vpu = , 

M;~ + fbrcN~v = 0 , 

R~~ +R~ =0, 

from which we derive 

r=O, 

M;~u =fabem!-'vpu , 

L abed = Ifabrfrcdm !-,vpq 4 !-,vpq . 

From the symmetry condition 

M abe Mbac !-,vpu = VI-'PU' 

(3.1Sa) 

(3.1Sb) 

(3.1Sc) 

(3.19a) 

(3.19b) 

(3.19c) 

(3.20) 

we get 

a=O, 

b= -c, 

so finally we have 

I(A; (x),av A! (x») 

(3.21a) 

(3.21b) 

= bG~v (x)G~v (x) + dE!-,vpqG~v (x)G;u (x) + K, 

(3.22) 

where 

G~v(x) =a!-,A~(x) -avA~(x) +rbeAe(x)A~(x). 

(3.23) 

Hence we find that the polynomial A~(x) has the well­
known form 

A~(x) = (K + aG~v (x)G;v (x) 

(3.24) 

which coincides with the solution already found by Joglekar 
and Lee3 in 197 S. It is straightforward to show that the above 
polynomial also verifies the equations 8+ (s)A~(x) = 0 
(s = 3,4,S, ... ). 

Furthermore the expression (3.24) satisfies the condi­
tion 8(3)A~(x) = 0 due to the antisymmetry properties of 
the G ~v (x) field and the equations 8(s)A~ (x) = 0 (s> 3) 
by direct computation. 

Notice that the problem has been fully solved by consid­
ering the actions of the operators associated only with the 
first and the second filtration, as pointed out by Dixon.4 

IV. SOLUTION OF THE LOCAL FUNCTIONAL COHOMOLOGY 
In this section we shall solve the system [Eqs. (2.5)] forp = I starting from the cocycle condition [Eq. (2.Se)] and then 

going backward to Eq. (2.5a). 
Taking into account the result ofthe preceding section, Eq. (2.Se) has the general solution 

ag(x) = 4p Tr[(A all. bAcA dAg)ca(x)Cb(x)CC(x)Cd(x)cg(x)] +8~~(x), (4.1) 

where A a is in the adjoint representation of the global group, such that 

A all. b = q8ab + f abe A C + d abe A C . 

Now 

Tr(A all. bA cA dAg) = 2q(fabe + d abe )8dg + farsfrbe f Sdg + farsdrbcfsdg + darSfrbe f sdg + farSfrbedsdg 

+ farsd rbed sdg + d arsd rbe f sdg + d arsd rbed sdg , 

so that, taking into account the anticommutativity of the ghost fields, we get 
A ag (x) = pdabeca(x)8Cb(x)8CC(x) + 8a~ (x) . 

(4.2) 

(4.3) 

(4.4) 

It is now a matter of a lengthy algebraic computation, already pointed out in Refs. 7, to go backward to Eq. (2.Sa). 
The result of the previous section says that the gauge cohomology admits nonzero elements only for polynomials of naive 

dimensions 0 or 4. 
Using the Jacobi identity, it is easy to show that 

dag (x) = a!-,ag (x) dxl-' = pd abe [dca(x)8C b(x)8C C(x) + 2ca(x)8dCb(x)8C C(x)] + d8~~ (x) 

= pd abe8 [ - ca(x)a!-, C b(x)8C C(x)dxl-' + 28( A; (x)C b(x)8C C(x»)dxl-'] + d8~~ (x) , (4.S) 

so 

(4.6) 
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The next step is performed along the same lines: indeed 

da1 (x) = 2pd abC(avca(x)ap. C b(x)8CC(x») dxP. I\dxv + d8 ~i (x) 

= -2pdabc8[CO(x)avCb(x)ap.cC(x)] dxP.l\dxv+d8~i(x), (4.7) 

so that 

ai (x) = 2pdobC(ca(x)avCb(x)ap.cC(x») dxP. I\dxv + d ~i (x) + 8~i (x) . 

Furthermore 

(4.8) 

dai (x) = 2pdObc(apCo(x)avCb(x)ap.cC(x»)dxP. I\dxv I\dx P + d8~i (x) 

= 2pd°bc8( A; (x)avCb(x)ap.CC(x»)dxP. I\dxv I\dx P + d8~i (x) , 

using again the Jacobi identity, so 

a;(x) = -2pdObc(A;(x)avCb(X)ap.cC(x»)dxP.l\dxvl\dxP+d~i(x) +8~~(x). (4.9) 

The last step is quite tedious, but every person who has some experience in gauge theory has done it (even ifin the opposite 
direction), since 

da; (x) = 2pd°bcau A; (x)avCb(x)ap.CC(x)dxP. I\dx~ I\dx P I\dxu + d8~i (x) 

so that 

= - 2p8[ d°bcau A; (x) A e (x>] + .b(dbcdjdlm + dcld jdmb + d cmd jdb/) A !(x) A ~ (x) A j(x)] 

Xap.CC(x)dxP. I\dxv I\dx P I\dxu + d8~~ (x) , 

a! (x) = 2p[ d°bcau A; (x) A e (x) + i,.(d bcd jdlm + d c1d jdmb + d cmd jdbl) A ! (x) A ~ (x) A :(x)] 

Xap.CC(x)dxP. I\dxv I\dx P I\dxu + d~j (x) + 8~~ (x) , 

and the uniqueness of the ABJ anomaly is recovered. 
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APPENDIX A: THE SPECTRAL SEQUENCES METHOD 

In this Appendix we present a short mathematical guide 
to the spectral sequences method. Let Fbe the whole vector 
space, in which an inner product is defined: (x, y)eR for all 
x, yeP. Suppose that on F two linear operators 8 and v act 
such that 

82 =0, v=vt , (Al) 

and the eigenvalues of the Hermitian operator are the inte­
gers. 

Let G (p) be the eigenspace belonging to the eigenvalue p 
of v, thatis,x(p) =px(p) ifx(p)eG(p). 

Consequently, 

F= L G(p) (A2) 
p=o 

and ifx(p)eG(p), then (x(p),x(q» = 0 for p=!=q. 
Define the Hilbert spaces 

F(P) = L G(q) , F(P) >F(P + l) , (A3) 
q~p 

E(p,r) = [F(p)n8- 1F(p+r)][8F(p-r+ l)nF(p) 

+ 8- 1F(p + r)nF(p + 1) ]-1, (A4) 

where xe8- 1F(p + r) if 8xeF(p + r), and the nested ones 
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E(r) = hE(p,r); - 00 <p< + oo}. (A5) 

The following theorem, due to Leray, holds. 
Theorem: Suppose that the space F is decomposed by a 

finite number of filtrations, that is, an m exists such that 
G(p) =Oforallp>m. Then 

(i) E(p,r) = 0 unless 0 <p < m, 

(ii) E(m) = E(m + I) = ... = E( 00 ), 

(iii) E(r + l)~(E(r),d(r») (O<r<p) , 

where ~ denotes isomorphism and H(E(r),d(r») is the co­
homology space on E(r) of d(r) that is induced by 8. Also, 

(iv) E( 00 )~Gr{H(F,8)}, 

where 

Gr{H(F,8)} = [~H(F(P),8), - 00 <p< + 00 ] , 

which means that the spaceE( 00 ) is isomorphic to the coho­
mology space of the operator 8 on F, and is approximated, by 
successive iterations, by the spaces E(r) [which are the co­
homology spaces of the operators d (r) for each r] . 

Now a suitable procedure for the construction of the 
operators d(r) is needed, and this, as stressed by Dixon, is 
nontrivial. To overcome this difficulty we have found, in 
Ref. 5, a different characterization of the spaces E(r) using a 
trick introduced in the topological analysis by Zeeman,8 and 
we showed the isomorphism 

E(p,r+ l)~{E(p,r)n(8-IF(p+r+ I»} 

x {E(p,r)n(8F(p - r»)}-l, (A6) 
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so if the operator {j admits the decomposition 

{j= L {j(p) , (A7) 
p=o 

where 

[ v,{j (p)] = p{j (p) , (A8) 

an algebraic characterization of the spaces E(p,r + 1) can be 
given by the following theorem, proved in Ref. 5. 

Theorem: If x (p)EE(p,r) , then the same 
x (p)EE(p,r + 1) if 

{j(r)x(p) = 0, 

{jt(r)x(p) = O. 

(A9a) 

(A9b) 

So, recalling the definition of E(r), it is easy to show that if 
xEE(r), then the samexEE(r + 1) if 

{j(r)x = 0, (AlOa) 

{jt(r)x = 0, 

for each r. 

APPENDIXB 

(AlOb) 

In this Appendix we want to discuss the cohomology 
space of the operator 

{j(1) = L [rbCCC(X)Da(n) A! (x) a 
n =0 aDa(n) A; (x) 

+ J...Da(n)(Cb(X)CC(x») a ] (B1) 
2 aDa(n) Ca(x) 

using the spectral sequences method, on the space of func­
tions bounded by the conditions Eq. (3.6a) and (3.6b) 
(dim + Q<I>fl )X~(x)<5 and dim X~(x)<4. 

Filtering {j ( 1) with the counting operator 

v=ca(x) a , 
aca(x) 

we get 

{j(1) =J... L (n)rbCDa(n)Cb(X)Da(n_r)CC(X) 
2 n>r>1 r 

X a , (B2a) 
aDa(n) ca(x) 

151(1) =CC(X) Lrbe[Da(n) A!(x) a 
n aDa(n) A; (x) 

+a Cb(x) a ] 
'" aa Ca(x) 

'" 
_ J... rbeCb(x)CC(x) a 

2 aca(x) 

=Ca(x)[ha(l) +g0(1)]. (B2b) 

So we have to solve 

A({jo(1»X~(x) ={t)O+(1),t)O(1)}X~(x) =0, (B3a) 

AW(1»)X~(x) = {{j1+(l),{j(1)}X~(x) = O. (B3b) 
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Equation (B3a), after some calculations, gives 

AW(l))X~(x) 

= 4
1 

[ L (~)(n) labe laIP[Da(r) Cb(x)Da(n _ r) 
n>r,s>1 r s 

x CC(x) a ] 
aDa(n -s) C P(x)Da(s) Cl(x) 

+ C(2)Da(n) ca(x) a ] X~(x) = 0, 
aDa(n) ca(x) 

(B4) 

which implies 

L AP(x) AP(x) = 0, ( a - I a -) 
n>2 aDa(n) ca(x) r aDa(n) Ca(x) r 

(B5) 

and taking into account Eq. (2.6a) we can easily derive that 
the function X~ (x) does not depend on the derivatives of the 
field ca(x) of order greater than 2. 

Concerning Eq. (B3b), the calculation is easily carried 
out taking into account the identities 

g<+(1) = -g<(1) , 

h c+ (1) = - h C (1) , 

and yields 

AW( l))X~(x) 

= [g<+ (1 )g<(1) + 2h c+ (1 )g<(1) 

+2hc+(1)hc(1)] X~(x) 

= [(g<+(1) +hc+(1»)(g"(1) +hc(1») 
+hc+(1)hc(1)]X~(x) =0, 

which means 

(B6a) 

(B6b) 

[h c(1) +g<(1)]X~(x) =0, hC(1)A~(x) =0, 

that is, 

hC(l)X~(x) =0, g<(1)X~(x) =0. 

So X~(x) has to be a polynomial with the general form 

X~(x) = I (Da(n) A; (x),avC! (x»)T(CC(x») , 

where the functions I(Da(n) A; (x),avC! (x») and 
T(CC(x») are invariant underg« 1) andh C( 1), respectively. 

APPENDIX C: THE EQUATION l)t(2)A:(x) = 0 

We want to discuss here Eq. (3.7b2), 

15+ (2)XP(x) = [A a (x) +labCa A C (x) a 
r '" '" v a A e (x) 

+ 2rbea a A C (x) a ] 
P '" v aapA~(x) 

x a XP(x)=O, (Cl) 
aa", ca(x) r 

and to show that no solution that contains first-order deriva­
tives of the Ca(x) fields will exist. 

Indeed the general expression for 

I~( A; (x),Da(n) A e (x) )apCC(x) 

(bounded by the conditions [Eqs. (2.6)]) is 
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I~( A; (x).Da(n) A ~ (x»)apCC(x) 

= L ;":"CTa1' A; (x)apCb(x) A ~ (x) 

+MZ~ A Z (x) A t(x) A ~(x)apCC(x) 

+KZ~pal' A t(x)apCO(x) 

+ NZ":" A ~ (x) A t (x)apCC(x) 

+ R ob A ° (x)a Cb(x) + soa CO(x) 
1'1' I' V P P 

+ MZ"""ual'a" A ~ (x)apCb(x) , (e2) 

where all the tensors are separately invariant under Lorentz 
and global gauge groups. 

Since no Lorentz-invariant tensor with an odd number 
of indices exists in four-dimensional space, then 

K ob - N°bc - V abc - S - ° (e3) I'''p - I'vp - I'''p - - . 

Ifwe now directly compute Eq. (el), it is easy to derive 
that 0) L Z":"CT = 0, since it appears in the sole term having 
the structure 

al'av A; (x) A ~ (x) fdbcL ;":"CT ; 

(ii) M ;~pu = 0, since it appears in the sole term of the form 

rbcM;~pual'a"ap A ~ (x) ; 

and (iii) M;~:U = 0, since it gives the only contribution of 
the kind 

2557 J. Math. Phys., Vol. 27, No. 10, October 1986 

M;~A;(x)At(x)A;(x)A~(x) . 

SO, at last, it is easy to derive R ;~ = 0. 
We have so proved that no term containing derivatives 

on CO(x) can satisfy Eq. (3.7b). 
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Traveling-wave solutions and the coupled Korteweg-de Vries equation 
c. Guha-Roy, B. Bagchi, and D. K. Sinha 
Department of Mathematics. Jadavpur University, Calcutta 700032. India 

(Received 23 September 1985; accepted for publication 23 May 1986) 

Some coupled nonlinear equations are considered for studying traveling-wave solutions. By 
introducing a stream function 'I' it is shown that if one of the solutions is of the form 
v=v(x - et), the other also must be of the form u=u(x - et). In addition, the possibility of 
including cubic nonlinear terms has been considered and such a system, assuming that the 
solutions are of the traveling-wave type, has been solved. 

I. INTRODUCTION 

Some time ago, Ito l had proposed the following coupled 
nonlinear wave equations: 

u, = Uxxx + 6uux + 2vvx' 

v, = 2(uv)x' 

(1a) 

(1b) 

An interesting characteristic of this couple is that it reduces 
to the familiar Korteweg-de Vries equation when v = 0. 
Moreover the symmetries associated with it generate a hier­
archy of coupled equations each of which is a Hamiltonian 
system with infinitely many constants of motion. 

Recently, Kawamot02 has shown that of all the particu­
lar solutions obtainable from (1), the traveling-wave solu­
tions of the type 

u=u(x - et), v=v(x - et) (2) 

(e being a constant) are necessarily cusplike in nature. It 
may be noted that Kawamoto had considered a more general 
version of (1), namely, 

u, + avvx + fluu x + DUxxx = 0, 

v, + r(uv)x = 0, 

(3a) 

(3b) 

where the parameters a, fl, D, and r were kept arbitrary. The 
purpose of this work is twofold. 

(i) First, we show that if one of the solutions of (3) is of 
the traveling-wave form, say v=v(x - et), then the other 
solution also must exhibit the same form, i.e., u must also be 
ofthe form u==u(x - ct). 

(ii) Second, even if one introduces cubic nonlinearity in 
(3) and modifies (3a) to make it assume the form 

u, +a(v3 )x +fl(u3 )x +A.(u2)x +DUxxx =0, (4a) 

v, + r(uv)x = 0, (4b) 

the conclusion in (i) remains unchanged. For completeness, 
we also have solved (4) postulating that the functions u and 
v are of the traveling-wave type (2). 

II. TRAVELING-WAVE SOLUTIONS 

We begin by writing (3a) in the form 

u, + ( fl /2)u2 + (a/2)v2 + DUxx)x = 0. 

This enables us to introduce an arbitrary function 
'I' = 'I' (x,t) [which may be called the stream function of the 
system (3)] such that 

u dx - (~ u2 + ~ v
2 + DUxx )dt 

= d'l' = a'l' dx + a'l' dt. 
ax at 

On comparison, one finds 

a'l' 
ax =u, 

and 

a'l' fl2 a2 1: 
--=-u +-v +uu . 

at 2 2 xx 

(5a) 

(5b) 

Substituting (5a) into (5b), v can be expressed as, let us say, 

v2 = - (2/a)('I', + (fl/2)'I'~ +D'I'xxx)=(2Ia)<I>(x,t). 
(6) 

One of the advantages of introducing a stream function is 
that the two coupled equations in (3) may be combined to 
yield a single relation in '1'. Solving then for '1', one can im­
mediately obtain u and v through the connection (5). Com­
bining (3b), (5a), and (6) we get 

(7) 

where <I> may be represented in terms of 'I' using the defini­
tion in (6). 

Let us assume that v is a function of (x - et) only. Then 
it may be asserted that 

e<l>x + <1>, = 0. 

Replacing <1>, by <l>x' we have from(7) 

(e - r'l' x )<I>x = 2r'l' xx <1>. 

On integrating (8), <I> may be obtained in a closed form 

<I> = (K2(t)/(r'l'x - e)2), 

where K(t) is an arbitrary function oftime. 

(8) 

Since <I> is a function of (x - et) only, we can write 
without any loss of generality 

(r'l'x - e)2 = K2(t) f2(X - ct), 

wheref(x - et) is another function of (x - et). Thus 

'I' x = (lIr)[e + K(t) f (x - et)]. (9) 

In order to show that 'I' x (ancf hence u) is a function of 
(x - et) only, we need to prove that K(t) must necessarily 
be a constant, i.e., K(t) must be independent of t. 

To this end, we substitute (9) in (6) to obtain 
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4>(x - et) = - 'l't - (6!r)K(t) j" (x - et) 

- (PI2r) [c + K(t)j(x - et) j2, 

where dashes denote derivatives (partial) with respect to 
(w.r.t.) x only. Expanding and rearranging the right-hand 
side (rhs) of the above expression, one can express 'l't in the 
form 

'l't = - 4>(x - et) - K(t)A(x - et) 

- KZ(t)B(x - et) - (pezI2r). (10) 

It may be noted that 'l't can be obtained also from (9), 
first, by integrating (partially) (9) w.r.t. x and then differ­
entiating (partially) the result w.r.t. t. In this way one ar­
rives at 

'I' = ~x + K(t) g(x _ et) + A(t) , 
r r r 

where A(t) is an arbitrary function of time and g(x - et) 
stands3 for the quantity S j (x - et)dx. Consequently, 

'l't = k(t) g(x _ et) _ eK(t) hex _ et) + A(t), (11) 
r r r 

where dots represent derivatives (partial) w.r.t. t and 
hex - et) = gt (x - et), assuming that gt (x - et) is not a 
constant. 

On comparison of ( 10) and (11), we have therefore, 

4>(x - et) = - K(t)A (x - et) - KZ(t)B(x - et) 

k(t) eK(t) 
---g(x-et) +--h(x-et) 

r r 
/3ez A(t) -----
2r r 

(12) 

Since the lhs of (12) is a function of (x - et) alone while the 
rhs is a product off unctions of time and (x - et), it follows 
that K (t) and A (t) must reduce to a constant value. Accord­
ingly, 'l'x (and therefore u) must be a function of (x - et) 
only. 

III. INCLUSION OF CUBIC NONLINEAR TERMS 

We now tum to Eqs. (4a) and (4b). Here instead of 
(10) and (11) we have 

'l't = -4>(x-et) -K(t)A(x-et) -Kz(t)B(x-et) 

eZ(ep ) -K 3(t)D(x-et) - r r+ A ( 10') 

and 

k(t) eK(t) A(t) 
'l't =--g(x-et) ---h(x-et) +--. 

r r r 
(11') 

Comparing (10') and (11'), we can write 

4>(x - et) = - K(t)A(x - et) - KZ(t)B(x - et) 

3 k(t) 
- K (t)D(x - et) - --g(x - et) 

r 
+ eK(t) hex _ et) _ e

Z
(e/3 + A) _ A(t) . 

r r r r 
(12') 
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Applying the arguments similar to those given before, we 
can claim that here too u must be a function of (x - et) only. 

IV. TRAVELING-WAVE SOLUTIONS IN THE PRESENCE 
OF CUBIC NONLINEAR TERMS 

In order to extract traveling-wave solutions of ( 4 ), let us 
write 

u=u(p), v=v(p), 

where 

p = (x - t). 

Then (4a) and (4b) become 

- up + a(v3 )p + /3(u3 )p + A(Uz)p + 8uppp = 0 (13a) 

and 

- vp + r(uv)p = O. 

Integrating (l3b), one obtains 

v=e./(yu-l), 

(13b) 

(14) 

where e. is an arbitrary constant of integration. Substituting 
(14) in (13a) and integrating twice w.r.t. p, it is easy to 
obtain 

8 Z 1 Z A 3 /3 4 -(u ) = e3 + ezu + - u - - u - - u 
2 p 2 3 4 

1 act 1 
+2"y (ru _1)z' 

(15) 

where ez and e3 are again constants of integration. The above 
Eq. (15) can be expressed in a compact form as 

where the parameters a, b, e, d, e, and g are given by 

a= _L 
8r' 

b= -4r(L+~) 
8't 38y3' 

e= -4r(~--I-+ 3/3) 
8y3 2t5r 2t5't' 

d= -4r(L_~ __ 1 +~) 
8't 8r 8r 8y3' 

e= - 4rC:'t + 3:r - i - ;~ - ~r). 
2ae~r 

g=-8-' 

Knowing the precise values ofthe parameters, (16) may be 
either integrated in a closed form or evaluated numerically. 

In the following, we consider the particular case when 
the parameters b and d vanish.4 Equation ( 16) then reduces 
to a convenient form 

- =ar+er+e-r+g==j(-r) +( d-r)Z 
2 dp 

(17) 

or 
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f d7 =.,fip + C4' 
~a? + c? + e7 + g 

(17') 

where C4 is a constant of integration. 

V. NATURE OF THE SOLUTIONS 

Without going into the nature of the parameters a, c, e, 
and g, one can make some qualitative remarks,5 about the 
possible solutions of ( 17) . 

We first of all note that a real bounded solution 7 is 
permitted when (d7/dp) 2>0. Moreover, at the vanishing 
points Of/(7), either d7/dp should change sign or tend to 
zero as p-+ ± 00. To examine this, let 71 be a simple zero of 
/(7). Then 

( :; r = 2 f' ( 71)( 7 - 71) + higher-order terms. 

On integration, the above yields 

7 = 71 + ~f' ( 71)( P - p})2 + higher-order terms, 

wherep = PI when 7 = 71, Thus 7 has a simple minimum or 
maximum 1'1 at PI' according as d/ /dp at 7} is positive or 
negative, respectively. 

If, however, 1'1 is a double zero of/ ( 7 ), then (:; r =/" (71)(7 - 71)2 + higher-order terms. 

Obviously, the validity of such a zero is possible only when 
/"(71) >0. 

Moreover, it also follows that 

7 -7}-constxexp[ ± H"(7}) p] 
as p-+ += 00 in order that 7 be bounded. The crucial point to 
note is that 7 attains the maximum value 71 exponentially 
over an infinite rangep. This may be recognized as the typi­
cal case of a solitary wave. 

In addition to the solitary waves, it is possible to find the 
cnoidal wave also. The solution may be expressed in terms of 
three distinct real zeros of/ (7), namely, 7}, 72' and 1'3' as 

P=P3+ iT d7 

T, ± ~2/(7) 

iT d7 
=~+ , 

T, ±~2(7-1'})(7-72)(1'-73) 

where 73 is a simple minimum of /(7) and 73 <72 <71, 
Therefore, 

7 = 72 - (72 - 73) cn2 [ ~! (71 - 73)( p - P3) 1m], 
where the parameter" m" of the Jacobian elliptic function cn 
is given by 

m = (72 -73)/(71 -73)' 

Noting that the period of cn for Oo;;;m < 1 is given by 4 K (m), 
where 

- LfT/2 de K(m) = , 
o ~ (1 - m sin2 e) 

2560 J. Math. Phys., Vol. 27, No. 10, October 1986 

one may define the period of 7 as 

2K(m)~2/(71 -73 ) . 

Now ifthe wavelength of a nonlinear cnoidal wave be repre­
sented by 21T/K, then we must have 

K = 1T~71 - 73/.,fi . K(m), 

which yields the frequency «(U) of the cnoidal wave as 

(U = 1TC~71 - 73/.,fi· K(m). 

VI. LIMITING CASES OF CNOIDAL WAVES 

We next consider the two important limiting cases of 
cnoidal waves. 

Case 1: m--+o. When m--+O, 73-+72 and 
c-+[ - a( 71 + 272)], Thus 

7( p)-+72 - (72 - 73)COS2 [~!( 71 - 72)( P - P3)] 

-+72 - A cos[K( P - P3)]' 

where 

A=~(72-73) and K=~2(71-72)' 

which is the solution for infinitesimal waves. 
Case 2: m-+1. When m-+l, 72-+71 and 

c-+[ - a(271 + 73)]' As a result 

7(p)-+71- (71-73)sech2[~~(71-73)(P-P3)], 

which is similar to the Boussinesq-Rayleigh solution for the 
solitary wave. 

VII. CONCLUDING REMARKS 

In this paper we have considered some coupled nonlin­
ear equations that involve two variables u(x,t) and v(x,t). 
We have found that if one of these is a function of (x - ct), 

the other must exhibit the same dependence of variables. In 
addition, we have generalized the works of Ito and Kawa­
moto to include cubic nonlinearity in one of the basic equa­
tions. Assuming that the functions u(x,t) and v(x,t) are of 
the traveling-wave type, we have solved such a system and 
considered some interesting particular cases. For instance, 
inclusion of nonlinear cubic terms in the equation has been 
found to lead to the possibility of cnoidal waves. Some limit­
ing cases of such waves also have been considered. 

ACKNOWLEDGMENTS 

We would like to thank Dr. A. Kundu for discussions. 
This work was supported by the C.S.I.R. and u.G.C. 

(D.S.A. programme), New Delhi. 

1M. Ito, Phys. Lett. A 91,335 (1982). 
2S. Kawamoto, J. Phys. Soc. 53,1203 (1984). 
'It may be noted that the integration has been done treating t as a constant. 
Any arbitrary function of time that results from the constants of integra­
tion has been lumped withA(t). 

4For "b " to vanish, the required condition isP = - ! A rwhereas for "d " to 

vanish the condition isfJ = r(rC2 + r - A). Thus, both "b" and "d" will 
vanish simultaneously if fJ = - !Ar and C2 = (2A. - 3r)/3r· 

sp. G. Drazin, Solitons (Cambridge U. P., London, 1983). 

Guha-Roy, Bagchi, and Sinha 2560 



                                                                                                                                    

Exact localized solutions of a family of two-dimensional nonlinear spinor 
fields 

Joachim Stubbe 
Fakultiitfiir Physik and Forschungszentrum Bielefeld-Bochum-Stochastik. D-4800 Bielefeld 1. Federal 
Republic of Germany 

(Received 2 January 1986; accepted for publication 4 June 1986) 

The classical equations of motion for two-dimensional nonlinear spinor fields are investigated. 
Explicit solutions for monomial and logarithmic self-interactions are presented. Furthermore 
properties of these classical solutions are discussed. 

I. INTRODUCTION 

It has been known for a long time that nonlinear field 
equations possess classical solutions with particlelike prop­
erties. 1 There is also much interest in finding explicit finite­
energy solutions that can be used as representations of ex­
tended particles. There are several studies in quantization 
around such classical localized solutions2

-
s and for certain 

two-dimensional field theories this procedure is worked out, 
e.g., the Thirring model and the Gross-Neveu model.6--9 
Moreover classical field theory is, at least, the order-zero 
approximation to quantum field theory. Thus classical field 
equations form a starting point for quantum theories of ex­
tended particles such as hadrons. Therefore it is interesting 
to study certain properties ofthe classical solutions of non­
linear field equations. 

Here we investigate the equations of motion for the clas­
sical Dirac field with a general class of self-interaction terms 
in one space and one time dimension. To our knowledge 
explicit solutions have been determined only for interactions 
of the form L[ = (~r ~)2 (see Refs. 10 -13). By using a 
different approach we are able to present explicit solutions 
for arbitrary monomial self-interactions and for the logarith­
mic self-interaction. General steps of this method are done in 
Sec. II. In Sec. III, exact, explicit localized solutions for spe­
cific models are worked out and certain properties of them 
are investigated by exact computation or general estimates. 
In Sec. IV, we derive relations between the solutions for the 
different types of interactions (scalar, vector, and pseudo­
scalar interactions) in the case of monomial nonlinearities. 

In Sec. V, we investigate nonlinear scalar fields obtained 
as a Klein-Gordon limit of the nonlinear spinor fields of Sec. 
III. Also some explicit solutions are presented. 

Furthermore we mention some relations of spinor field 
theories to the sine-Gordon equation. 

II. THE GENERAL METHOD 

We study the following Lagrangian: 

~ D = (i12) [¢71l all¢' - (all~)rll¢'] - m# + G(~r¢'), 
(2.1 ) 

where m is a positive constant and G a real-valued function 
with G(O) = O. 

We choose the following representation of the r matri-
ces: 

y>=cr = (~ ~J, 
1 • 1 (0 -') r=-UT= . o ' -, 

r = y>rl = cr = e -') o . 
We are looking for stationary solutions of the form 

¢,(x,t) = e - ;"'tlP(x) , 

(2.2) 

which are localized, that is, with the boundary condition 

lim lP(x) = 0, 
x_± 00 

such that the physical quantities are finite. 
The field equations are 

irll a .1. _ m.l. + aq = 0 
1''1' 'I' a¢' (2.3) 

. (resp. 

irl dlP _ mlP + y>WlP + aq = 0) . 
dx alP 

(2.3') 

We require lP to be real and define 

lP(x) = (:~:~). rex) = ~(x)rlP(x) 
and we set 

H = HG(r) - m('? - u2
) + w('? + u2

)] • (2.4) 

Then we are lead to the following system: 

du aH dv aH 
-=-, -= --. (2.5) 
dx av dx au 

Thus H is a constant of motion and using the boundary con­
dition we have H = O. Therefore localized solutions only ex­
ist if (0,0) is not isolated in the set {(u,v) IH = O}. 

The strategy is as follows: We define q(x) : = u(x)1 
vex). Let us remark that 8(x) : = arctan q(x) is the phase 
between the two components of the solution. Then we derive 
differential equations for q(x) and z(x) from the system 
(2.5) and try to decouple them by usingH =·0. 

In the next section three types of interactions are 
worked out: 

(i) scalar interaction s, 
(ii) vector interaction V, 
(iii) pseudoscalar interaction P . 
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In addition we make a brief investigation of combinations of 
the different interactions S, V, and P. 

III. EXACT SOLUTIONS OF SPECIFIC MODELS AND 
THEIR PROPERTIES 

In the sequel, G is assumed to be differentiable on 
R\ {O} and G(O) = O. We denote the derivative of G by g. 

A. Scalar Interaction 

In this case the system (2.5) reads 

du. .2 2 - = v.(g(vs - Us) - (m - w»), 
dx 

dv. .2 2 - = u.(g(V; - Us) - (m + w»). 
dx 

(3.1) 

UsingH = Owe obtain forq. = u';v. andz. = (v; - U;)1/2 
the following equations: 

dq.Jdx -2 G(r.) (3.2) 
---2 =g(z;) ---, 
1 - q. r. 

dz. q. 
-= -2w---zs • 
dx 1-q; 

(3.3) 

Equation (3.3) is very interesting because it does not depend 
on the particular form of the interaction term G, but is only 
related to the type of interaction. 

In addition, the relation H = 0 reads 

G(r.) 2w 
--=m+w---. (3.4) 

r. 1 - q; 
Now we have to expressg(r.) in terms of the right-hand side 
of (3.4). Putting this into Eq. (3.2) leads to an ordinary 
first-order differential equation that can be easily solved in a 
lot of cases. 

Example 1 [g(x) = AXP , p>O,A>O]:Hereqs satisfies 

dqs 2 
dx = p[ (m - w) - (m + w)q.] , (3.5) 

which has the solution [choosing q(O) = 0] 

qs (x) = a tanh(ppx) , (3.6) 

with a=(m-w)/(m+w»)1/2, p= (m 2 _w2)1/2. We 
see that w < m corresponds to a confined solution. 

By (3.2), 

r.P(x) = (m - w)(p + 1) 1 - tanh2(p,8x) 
A 1 - a 2 tanh2 (ppx) 

Using the tranformations Us = z.q. (1 - qs ) -1/2, v. 
=zs(1_q;)-1/2, 

u (X)=(p+l)(m-w»)1I2P
a tanh(ppx) 

s A (1 _ a 2 tanh2 (ppx»)1/2 

(3.7a) 

(3.7b) 
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Example 2 [g(x) = k log x, k > 0] : Because of 
G(x) = k( - x + x log x), (3.2) reduces to 

dq. = k(1 _ q;) . (3.8) 
dx 

The solution is 

q. (x) = tanh kx 

By (3.3), 

z. (x) = exp( m 2~ k )exp [ - ; cosh 2kx] . 

Thus we obtain the solutions 

(3.9) 

us(x) =exp(m2~k)sinh(kx)exp[ - ; COSh2kx], 

(3.10a) 

vs(x) =exp(m2~k)coSh(kx)exp[ - ; COSh2kx]. 

(3.lOb) 

The energy eigenvalue w is determined by the normalization 
condition 

Lcp +'1' dx = 1. 

It is easy to see that for the solutions of example 1, w (A) is a 
decreasing function and OJ-+m for A-o. 

The "expectation value" of the classical Hamiltonian 
given by 

(,w') = m L q;cp dx 

is clearly bounded above by m in view of the estimate 

w(V; + u;) <m(V; - u;) 

for the solutions of example 1 we have (,w')-+m for A-o. 
Hence in the zero-coupling limit the expectation corre­

sponds to a free, massive fermion while for finite values of A 
the bound state requirement holds. 

In Ref. 12 these values have been computed for the spe­
cialcaseg(x) =AX: 

w = m·(1 +A 2/4)-1/2, (3.11) 

(,w') = (2mIA)arcsinh(A 12) . (3.12) 

In order to get an estimation of the size of the localized solu­
tions we prove the following lemma. 

Lemma 3.1: Suppose G(V; - U;):>O. Then 

( 
2) S(V; + u;)x2dx 1 

x .- :>---
. - SV; + u; dx 4{32 . 

(3.13 ) 

Proof Multiplying the first equation of (3.1) by U·X and 
the second by v'X and subtracting yield 

x d. 2 2 ''L. - - -(v:. - U ) = kUJU V ·X • 
2 dx s S • s 

(3.14 ) 

Integration leads to 

~ J V; - u; dx = 2w J Us VsX dx . (3.15 ) 

Then by the Cauchy-Schwarz inequality 
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Thus 

f( V; + u; )x2 dx 

SV; + u; dx 
1 (f V; - u; dX)2 

~----~~~~----
16w2 (f u; dx) (f V; dx) 

1 (f V; - u; dx) 2 

= 4m2 (f V; + U; dX)2 - (f V; - U; dX)2 
(3.16) 

Now (3.13) follows using the inequality V; + u; < (ml 
w)(V; - u;). 

In the case g(x) = AX one obtains a better bound under 
the assumption of normalization by using (3.16) directly. In 
combination with (3.11) and (3.12), we see 

( 
2) 1 (2/..1)2 + 1)(arcsinh(A 12) )2 

X ~--- . 
4m2 1 - (2/A)2(arcsinh(A 12»)2 

(3.17) 

This bound shows that there are no confined solutions for 
..1-+0 and ..1-+ 00. 

Remark 1: The solutions of the (l + 1 )-dimensional 
scalar-interaction problem correspond precisely to the 
asymptotic forms of the (1 + 3) -dimensional equations. 13 

There are no analytic solutions in (1 + 3) dimensions, so 
that the exact solutions in (1 + 1) dimensions get an addi­
tional importance. The existence of localized solutions for 
classical nonlinear Dirac fields in (1 + 3) dimensions has 
been proved when G(x) is strictly convex on Ro+, 
G(O) =g(O) =Oand lim g(x) = 00 (see Ref. 14). 

Remark 2: Lemm:3~1 exhibits the existence of a mini­
mal radius Xo of the classical solutions. Similar investiga­
tions were only done for solutions in three space dimensions. 
See, for example, Ref. 15. A numerical computation of (x2

) 

when g(x) = AX is given in the Appendix. 
Remark 3: The assumption on G(V; - u;) in Lemma 

3.1 is made not only for technical reasons. For the logarith­
mic self-interaction a numerical computation shows that 
(x2

) can be arbitrary small (see the Appendix). 

B. Vector Interaction 

By (2.4) and (2.5) we are lead to the equations 

duv =vv(g(~+u~)-(m-w»), 
dx 

dv 
_v = -uv(g(~+u~)+(m+w»). 
dx 

(3.18) 

Analogous to the scalar case we obtain for qv = uvlvv and 
Zv = (~+ U~)I/2 

dqv lux _ (r.) _ G(r.) (3.19) 
l+q~ -g v r.' 

dzv qv 
-= -2m-----z . 
dx l+tfo v 

(3.20) 
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Again we have an equation that does not depend on the non­
linearity G. Identity (3.4) is replaced by 

G(r.) 2m 
--= - (m+w) +--. (3.21) r. l+q~ 

Now we take the same examples as in the scalar-interaction 
case. 

Example 1 [g(x) = A,xP, A> 0, P > 0]: We see that qv 
satisfies (3.5) and therefore 

qv (x) = q. (x) = a tanh(pp'x) . (3.22) 

Computing 

r.P(x) = (P+l)im - w ) 1 - tanh2(pp'x) 

1 + a2 tanh2(pp'x) 
. 1 2)-1/2 d (1 + 2)-1/2 andusmguv =zvqv( +qv an Vv =Zv qv , 

we obtain the following explicit solutions: 

( 
(p + l)(m - w) )1I2P tanh (Pp'x) 

Uv (x) = a A (1 + a2 tanh2(pp'x»)1/2 

(3.23a) 

(3.23b) 

We see that again w-+m as ..1-+0 for w determined by the 
normalization condition f q? + q? dx = 1. Moreover (K)-+m 
as ..1-+0, so that the solutions exhibit a bound state behavior. 

For p = 1 the exact results are well known 12: 

w = m cos(Al2) , 

(K) = (2mIA)sin(AI2) . 
(3.24) 

The first identity imposes A<1T to have positive-energy fer­
mion states. 

Lemma 3.1 is replaced by the following lemma. 
Lemma 3.2: Suppose G( ~ + u~ ) > O. Then for a local­

ized solution of (3.18) the following estimate holds: 

(x2);;"1I4p'2. (3.25) 
Proof: Multiplying the first equation of (3.18) by U·X 

and the second by V·X leads after addition to 

x d. 2 2 2 - --(vv + uv) = muvvvx. 
2 dx 

Integration yields 

1- r ~ + u~ dx = 2m r UvVvX dx . 
2 JR JR 

As in the proof of Lemma 3.1 we use the Cauchy-Schwarz 
inequality and obtain 

f(~ + U~)X2 dx (f ~ + u~ dX)2 1 0 
--~~----;;.. ;;"---. 

S ~ + u~ dx 16m2 (f ~ dx) (f u~ dx) 4{J2 

For g(x) = AX we obtain the better bound 

(X2)~ 4!2 (1 _ (4/..1 2~Sin2(A 12») , (3.26) 

which shows that for ..1-+0 there is no confined solution. A 
numerical computation of (x2

) is given in the Appendix. 

Joachim Stubbe 2563 



                                                                                                                                    

Example 2 [g(x) = k log x] : There will be no localized 
solution for this interaction. For qv we immediately obtain 
the simple equation 

dqv = k(1 + q~) . 
dx 

The solution is 

qv(x) = tankx. 

Then 

dzv tan kx . 
-= -2m 2 Zv = -msln(2kx)zv' 
dx l+tankx 

Integration leads to 

log [ Zv (x)/zv (0)] = - (m/k)sin2 kx , 

with 

Zv (0) = exp«m - w)/2k +!). 

Thus we found an oscillating solution. 

C. Pseudoscalar interaction 

The equations of motion are 

dup -- = upg(2up vp) - vp (m - w) , 
dx 

dvp -- = - vpg(2upvp) - up(m + w) . 
dx 

As before we derive one equation for qp = up/vp, 

_1_ dqp _ z: _ G(zi,) 
2qp dx -g( p) zi,' 

using zp : = (2up vp ) 1/2 the relation H = 0 reads 

G(zi, ) m 1 - ~ w 1 + q; --=-------
zi, 2 qp 2 qp 

(3.27) 

(3.28) 

(3.29) 

and we obtain an ordinary differential equation in terms of 
qp for a certain class of nonlinearities G. 

Example 1 [g(x) = AXP , A> 0, P > 0]: Again we obtain 
for the quotient of the solutions 

qp (x) = a tanh(p/:1x) . 

This yields 

z:P(x) = (p + 1) /:1 1 
p Up cosh (p/:1x)sinh (p/:1x) 

Using the transformations up = (1/~)Zpq!/2 and vp = (1/ 

~)zpqp- \12, the solutions are given by 

.Ja(P + 1 )1!2P tanh I/2 (p/:1x) 
u (x) =- --/:1 , 
p ,fi U (cosh (p/:1x ) sinh (p/:1x ) ) 1!2p 

(3.30a) 

v (x) = - --/:1 {f(P + 1 )1!2P 

p 2a U 

1 X . 
tanh 112 (P/:1x) (cosh (p/:1x) sinh (p/:1x ) ) \/2p 

(3.30b) 

Since the upper spinor component possesses a nonintegrab1e 
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singularity at x = 0 the obtained solutions are not normal­
izable. 

Thus in contrast to scalar and vector interaction local-
ized solutions do not exist contradicting the result in Ref. 12. 

Example 2 [g(x) = k log x, k>O]: We find 

dq 
-1:.= 2kqp, 
dx 

which has the solution q(x) = q(0)e2kx
• 

The general equation for zp that is independent on the 
nonlinearity g is 

dz z 1 
-p +..L-[(m -w) + (m +w)q;] =0. 
dA 2 qp 

Thus there is no localized solution. 

D. Combination of different types of Interaction 

By simple extensions of the methods presented above it 
is also possible to find explicit solutions of Lagrangians that 
contain different types of couplings, e.g., scalar and vector 
interaction. We will not give a complete discussion of all 
possible combinations, but we illustrate the procedure for a 
particular case: Suppose the Lagrangian of interaction pos­
sesses a scalar and a vector interaction term, i.e., 

(3.31) 

where G, F satisfy the assumptions made at the beginning of 
this section. If I andg denote the derivatives of F (resp. G) 
the equations of motion are 

du 2 
-=v(g(v-u )+/(v+u2)-(m-w»), 
dx 

dv = u(g(v _ u2) - I(v + u2) - (m + w»). 
dx 

For localized solutions we have 

H(u,v) = HG(v - u2) + F(v + u2) 

-m(v-u2) +w(v+u2)], 

which is equivalent to (q = u/v) 

(1 _ q2) G(v - u
2
) + (1 + q2) F(v + u

2
) 

v-u2 v+u2 

= m(1 - q2) _ w(1 + q2) , 

where q satisfies the differential equation 

dq = (1 _ q2) [g( V _ u2) _ G( v - u
2
) ] 

dx v_u 2 

(3.32) 

(3.33 ) 

(3.34) 

+ (1 +q2)[/(V + u2) _ F~ :U~2)]. (3.35) 

We consider the following example: g(x) = AXP , 

I(x) =J.LxP. Again we obtain q(x) = a tanh/:1x. Then 
(3.35) and the fact that 

(v+u2) = [(1 +q2)/(1_q2)](V_U2) 

leads to 
(v - u2)P = (p + 1) (m - w) (1 - tanh2 p/:1x) 

X (1 - a 2 tanh2 p/:1x)p 

X [A( 1 - a 2 tanh2 p/:1x)P+ \ 

+ J.L(1 + a 2 tanh2 p/:1x)p+ \] - \ . 
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Thus we obtain the solution using 

u = (v - U2)1/2. q. (1- q2)-1/2, 

V= (v - U2)1/2. (l_q2)-1/2. 

Clearly we have (3.7a) and (3.Th) ifp. = o and (3.23a) and 
(3.23b) if A. = O. 

Let us remark that if p = 1 the total solution for classical 
Fermi interactions is given by (3.36): For scalar interaction 
wehavep. = o while A. = Oin the vector case. Forpseudosca­
lar interaction we get p. = - A.. In addition other types of 
interaction are all equivalent with vector interaction. 

IV. RELATIONS BETWEEN THE SOLUTIONS FOR THE 
DIFFERENT TYPES OF INTERACTION 

In this section we will only consider the monomial inter­
action g(x) = A.xP because we know the explicit solutions 
for the three types of interaction. 

At first we see that the phase between upper and lower 
components does not depend on the type of interaction. It is 
solely determined by m and (j). This reads 

qs =qv =qp' (4.1) 

This was first observed in Ref. 12 for g(x) = A.x. Relation 
( 4.1 ) is based on the following relation for the Lagrangian of 
interaction: 

~ aG~;tP) = (p + l)G(~rtP) , 

aG(~rtP) tP = (p + 1)G(~rtP) . 
at/J 

See Ref. 12 for the details. 
Remember 

Z;P(x) = (m - (j)~(P + 1) 1 - tanh
2
(ppx) 

1 - a 2 tanh2(ppx) , 

z;=v;-U;, 
r.P(x) = (m - (j)(p + 1) 1 - tanh2

(ppx) 
o A. 1 + a 2tanh2 (ppx) , 

~=~-u~, 

(4.2) 

~(x) = (m -(j)(P + 1) _______ _ 

p A. 2a sinh (ppx ) cosh (ppx) , 

zi, = 2upvp . 

Thus we have the following relation between the different 
types of interaction: 

zs-4P + Zp-4p = zv- 4P . (4.3) 

By computing the Hamiltonian densities J'I"' and the charge 
densities f!1 we obtain 

J'l"'s-p + J'l"'p-p = J'I"'.-p, p = 2p/(p + 1) , (4.4) 

.e? s-p + .e? p-p = .e? v-
p, p = 2p/(p + 1) . (4.5) 

Equation (4.5) was observed also in Ref. 12 for g(x) = A.x. 
As a consequence of ( 4.1) we see 

J'l"'s J'I"' v J'I"' p 1 ct 
-=- -=-- (4.6) 

.e?s .e?o .e?p 1 +ct 
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V. NONLINEAR SCALAR FIELD EQUATIONS IN ONE 
DIMENSION 

At the beginning of this section we restrict ourselves to 
the scalar interaction. 

Applyingir" a" to (2.3) one gets an equation similar to 
the Klein-Gordon equation. Considering only the upper 
spinor component we obtain the Klein-Gordon limit. This 
was done in Ref. 16 for (1 + 3) dimensions. Here we have to 
investigate the equation 

d 2v 
-2 = (m2 _(j)2)v-2mg(v)v+g(V)g(V)V, 
dx 

(5.1) 

which gives 

d
2
v = (m2 _ (j)2)V _ 2mA.VP+ 1 + A. 2V4p+ 1 (5.2) 

dx2 

for the monomial interaction g(x) = A.XP • 
Using the transformation vex) = (P/A. 2)1/4p

rp (PX) 
and defining E = 2mp -I we obtain (denote the derivative 
with respect to r = P Xg by a prime) 

rp" = rp _ Erp2p+ 1 + rp4p+ 1. (5.3) 

Now by a well-known existence and also uniqueness 
theorem (see, e.g., Ref. 17) localized solutions exist if and 
only if 

E>2(p+ 1)(2p+ 1)-1/2 

=2(1 +p2/(2p+ 1»)1/2. (5.4) 

Condition (5.4) is equivalent to the requirement 

«(j)/m) >p/(P + 1) . (5.5) 
Example: Consider the Fermi interaction g(x) =A.x 

and let (j) be determined by the normalization condition [see 
( 3.11 ) ]. Then the associated Klein-Gordon equation has 
only confined solutions if 

(5.6) 

In general it is difficult to compute the solution explicitly but 
it is possible in this case. We see that the explicit solution of 
the scalar equation is given by 

rp(r) = (4/E) 112[1 + (1 - 16/3c) 112 cosh 2r] -1/2. 

For the logarithmic nonlinearity g(x) = k log x, (5.1) leads 
to 

(5.7) 

Setting vex) = at/J(bx) , a = exp«m + k)/2k), b = k, and 

~ = 1 - «(j)/k) , 

we obtain 

The potential associated to the above equation is 

F(t/J) = - !t/J2[~ + (log t/J2)2] . 

(5.8) 

Thus there are no solutions if ~>O. For ~ < 0 we find by 
direct integration 

t/J(r) = exp( -!..;-=-8 cosh 2r) , (5.9) 
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which is 

v(x) = exp( m 2~ k )exp( - 2~ Jul- k 2 cosh 2kx) 

( 5.10) 

in the old variables. 
Applying the same procedure to the vector interaction 

case one obtains the following scalar field equation: 

d 2v 
dx

2 
= (m2 -a,z)v-2u>g(v)v-g(v)g(v)v. (5.11) 

For g(x) =AxP this reads 

d 2v dx
2 

= (m2 _tV2 )v - 2tVAvP+ I -A 2V 4p+ I. (5.12) 

This equation always admits a confined solution. 
Here we want to discuss an important particular case 

related to the massive Thirring model. We are interested in 
solutions for which tV = O. Remember that there are local­
ized solutions for the nonlinear Dirac equation. (This is dif­
ferent from the scalar interaction case where tV = 0 produces 
no localized solution.) The related Klein-Gordon equation 
is 

d 2v --=m2v-A 2V
4p + l

• 
dx2 

The solution of this equation is given by 

vex) = (y cosh 2pmx) -1/2p , 

where 

r= [l/(2p+ l)]A2/m2
• 

(5.13) 

Thus v has the same asymptotic behavior as the spinor solu­
tions for tV = 0 and v is proportional to the charge density of 
the spinor field or, more precisely, 

v = (~2p + 1/(p + l»)I/P(~ + u~)! 
As remarked in Ref. 12 the phase (}(x) = arctan vex) 

satisfies the sine-Gordon equation 
d 2(} 
--2 = - (pm)2 sin 4(). 
dx 

Furthermore the classical solution of the massive Thirring 
model (p = 1) and ~ = 4(} satisfy the Coleman correspon­
dence equations. 18 In some sense also the related scalar field 
equation (5.13) is connected with the sine-Gordon equa­
tion, because 

TIJ (x) = J.L arccos ( vly) 2, J.L > 0, 

satisfies 

d
2

TIJ ') .. 2' 2 --= -..,..m SlD-T . 
dx2 J.L IJ 

Moreover we see that the logarithmic scalar interaction (see 
example 2 in Sec. III A) is-at least formally-related to the 
sine-Gordon equation. The phase (}(x) = arctan tanh kx 
does not depend on tV and m, and ¢J = 4(} satisfies 

d 2¢J = _ 4k 2 sin .I.. 
dx2 Y' , 

where k is the coupling constant of the interaction. But up to 
the present time we do not have any physical interpretation 
of these facts. 
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0.1 0.5 1.0 .!!L 
m 

FIG. 1. In units of 11m2, (x2) is 
plotted as a function of ())/m. 

Note added: A few days after this work was finished we 
got the November issue of J. Phys. A, in which Mathieul9 

studied soliton solutions for (1 + 1) -dimensional Dirac 
equations with nonlinearities satisfying the homogeneity re­
lation (4.2) of our paper. Using this property he obtained a 
nice formula finding explicit solutions for general types of 
interaction, while we treated general nonlinearities in parti­
cular types of interaction, although only for homogenous 
self-interactions and for the logarithmic self-interaction are 
explicit solutions presented. Nevertheless our approach al­
lows us to determine such soliton solutions in more general 
cases. Furthermore the existence conditions of Mathieu co­
incide with our results in Secs. II and III. 
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APPENDIX: NUMERICAL COMPUTATION OF (xl) FOR 
CERTAIN EXAMPLES 

We compute the integrals numerically by Simpson's 
rule with the use ofthe HP-67 programmable pocket calcu­
lator. 

s 

5 10 
W 

k 

FIG. 2. In units of1l4k 2, (x2
) is 

plotted as a function of ())/k. 
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15 

10 

FIG. 3. In units of 11m2, (x2) is 
plotted as a function of wlm. 

1.0 
w 
iii 

1. Scalar Fermi Interaction (g(x) = Ax) 

Using 

f v: + u2 dx = .±. _a_ JR s 
s Al-a2 

we obtain 

(x2) = -4 (1 + a 2
)(21 - a

2
) l(a) , 

m 2a 
where 

l(a) = f
o

" (1-tanh
2
r)(I+a2

tanh
2 r) rdr 

Jo (1 - a 2 tanh2 r)2 

is the integral we compute numerically. 

(Al) 

In Fig. 1, (x2) in units of 11m2 is plotted as a function of 
fJ)/m. 

The minimum value (x~) = 2.3875 . (11m2) is attained 
for fJ) = 0.371. 

2. Logarithmic scalar Interaction 

We have 

(x2 ) = _1_ SO'r cosh r· exp[ - (fJ)/k)cosh r]dr . 
4k 2 Sa cosh r· exp[ - (fJ)/k) cosh r ]dr 

(A2) 

Thus (x2
) depends on the absolute value of k and the quo-
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tient fJ)/k but not on m. This is di1f'erent from the case before. 
Figure 2 exhibits (x2

) in units of 1I4k 2 as a function of fJ)/k. 
We see that there is no minimum value of (x2

). Therefore the 
positivity of the interaction is somewhat essential for Lemma 
3.1. 

3. Vector Fermi Interaction 

Using 

f u~ + V. dx = .! arccos ~ , JR A m 
we find after simple calculation 

(x2 ) = _1_ 1 + a 2 
1 

m2 a arccos(fJ)/m) 

L.. rdr 
X . 

o 1 + (1 + a 2)sinh2 r 
(A3) 

If one restricts to positive energy fermion states 
(x2) = 0,617 . (11m2) is a lower bound attained in the zero­
energy limit (i.e., fJ) = 0). (See Fig. 3.) 
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In a previous paper the author has shown that for a gauge field theory with positive definite 
Cartan-Killing metric Cap and space metricgij the action functional is locally strictly 
minimum provided that the critical point and the variation both satisfy the gauge condition 
A 41 = O. This result is now extended so that no assumption is needed about gauge conditions. 

I. INTRODUCTION 

The action functional of a general gauge field theory is 

S [A ] = ! CafJ L (A [h,jJ + C~AA jA ~)(A ~,I 1 

+ C tvA r A k )ghkgj/ d nx , (1 ) 

where the A f (x) are gauge potentials. The notation, etc. is 
fully described in a previous paper I , where it was argued that 
when both the Cartan-Killing metric (CafJ ) and the space 
metric (gij) are positive definite, a solution ofthe field equa­
tions always represents a strict local minimum of the action 
("local" in the sense that the domain n must be sufficiently 
small), In order to prove this assertion it was necessary to 
assume that both the critical point A and the variation 
A = A + E satisfy the Lorentz gauge condition A 41 = O. Of 
course there exists a gauge transformation /-La (x) so that 
A ( /-L) 41 = 0, but it is not in general true that also 
A ( /-L )41 = O. In this paper strict local minimality of the ac­
tion will be proved without any assumptions being made 
about gauge conditions, 

II. CALCULATION 

Suppose that A f (x) is a critical point of the action func­
tional (1) and that A f(x) = A f(x) + Edf(x) is a vari­
ation [so that on the boundary an, df(x) = 0]. The Car­
tan-Killing metric CafJ and the space metric gij ~e positive 
definite. Gauge transformations /-L to A and v to A are made 
so that, in n, 

A( II.)~. =A(v)~. =0, (2) r- I,' '.1 

and, on an, /-L. v = O. It was shown in Sec. IV of Ref. 1 that 
such /-L, v exist and are unique when n is small enough. It 
should also be noted that the difference /-L - v is of order E. 
Define 

Ed( /-L,v)f =A(v)f -A( /-L)f, 

so that 

(3) 

d( /-L,v)rl = O. (4) 

By expressing A ( /-L) and A ( v) in terms of A, A, /-L, and v it 
follows thatl 

a) Correspondence address for 1986. 
b) Permanent address. 

Ed ( /-L,v)f = Edf + C PE (vB A ~ - /-L PAD 

- (v'" -/-La),I' 

which on the boundary an simplifies to 

Ed ( /-L,v)f = ( /-La - v'") ,I • 

(5) 

(6) 

Thus, in general, on the boundary an d( /-L,v)f is nonzero, 
but the component tangential to the boundary is zero. 

The action functional is gauge invariant so that 
S[A(/-L)] =S[A] and S[A(/-L) + Ed(/-L,v)] 
=S[A+Ed]. Expansion in powers of E implies that 

S(2)[A( /-L), d( /-L,v)] = S(2)[A,d]. Thus minimality is 
proved by showing that at a critical point A, S(2) [A( /-L), 
d (/-L,v)] > 0, for all nonzero d ( /-L,v)f whose tangential 
component is zero on the boundary an. Under this condi­
tion and condition (4) it follows that 

(7) 

In other words, Lemma 5.1 of Ref. 1 remains valid under the 
weakened conditions used here. For notational convenience 
d ( /-L, v) will now be written as &1J. The proof of Eq. (7) 
proceeds as in Ref. 1 to obtain 

1I&1J[k.jJI12 -1I&1J(k,j) 112 = L r - &1Jj&1J'k,jnk dn-1x 
a Jan 

The second term is zero by condition (4). The first term is 
evaluated by using coordinates such that at a given point 
Pean, nk = (1,0,00.,0). Then, as &1J has zero tangential 
component, &1Jf = (&1Jf, 0,00', 0) at points in an at or near 
P. At P, &1J'2,2 = &1J~.3 = ... = 0, so that by (4) &1Jf,1 = O. 
The first term on the right-hand side of ( 8) is therefore also 
zero and the proof of Eq. (7) is completed as in Ref. 1. 

As in Ref. 1 it may be shown that 

(9) 

Unfortunately Poincare's inequality cannot be applied 
because &1J is not zero in an. However an extension of 
Poincare's inequality can be used3

: Given a bounded Lip­
schitz domain n and a vector function u(x) such that at all 
points in the boundary an at which 3 a unique normal, the 
tangential component ofu(x) vanishes. Then 3 c, indepen­
dent ofu(x). such that 
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L lui P dx<.c L IVul P dx . ( 10) 

Further, if n is changed in size by means of a linear map then 
the value of the constant c behaves as R P, where R is the 
radius of the smallest ball containing n. 

Use of the above theorem then shows that for n small 
enoughS g) [A,@] > 0 (if@ #0) so thatthe critical point A 
is a strict local minimum of the action. 
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In the context ofPolyakov's theory the geometrical approach, in which the functional measure is 
defined as a formal volume 00 -form, is developed. The special version of the Fubini theorem on 
manifolds is derived, which provides the geometrical interpretation of the Faddeev-Popov 
method. The conformal gauge is studied within this framework. As a result, the explicit form of 
functional measure in effective Liouville quantum field theory is obtained. 

I. INTRODUCTION 

In Polyakov's method of averaging, I the sum over the 
random surfaces can be reduced to the two-dimensional 
quantum field theory, which is determined by the effective 
action and the resulting functional measure. This action is 
well known (as the Liouville actionl

-
3

) in contrast to the 
measure, the explicit form of which remains unclear.2

,4.5 In 
principle the exact form of this measure can be derived by 
application of the Faddeev-Popov method. At the starting 
point of Polyakov's considerations I the functional measures 
are introduced as Riemannian measures on an infinite-di­
mensional manifold, Thus it is clear that the Faddeev-Po­
pov procedure is related to a certain version of the Fubini 
theorem on manifolds. Such a geometrical approach to the 
functional integration in the quantum field theory is not 
new. In a hidden form it can be found in the earlier papers on 
quantum gravity.6 More recently these geometrical ideas 
have appeared in the context of Yang-Mills theory. It is 
known that the quotient of the space of connections by the 
group of gauge transformations is a principal nontrivial fi­
bration.7

-
9 Moreover, the gauge orbit manifold has a natural 

Riemannian structure7
•
10 and the associated formal volume 

element gives rise to the Faddeev-Popov determinant. IO
•
1I 

In this paper, we will apply this geometrical approach to a 
discussion of the Faddeev-Popov procedure in Polyakov's 
theory. Our analysis will be performed on the algebraic level, 
i.e., the problems connected with the topology and differen­
tial structure of functional manifolds under consideration 
will be omitted. Such a restriction is in a way justifiable. 
There exist well-defined functional measures on infinite-di­
mensional manifolds (e.g., Gaussian measures on abstract 
Wiener manifolds 12) that, in many cases, are insufficient for 
the quantum field theory, however. So, in physics the com­
monly used approach to functional integration is the heuris­
tic one based on analogy with the finite-dimensional case. 
From this analogy only the algebraic structure of the formal 
calculus offunctional measures can be derived. It seems that 
this structure should be, in general, preserved in future cor­
rected theory. The present geometrical approach, in which 
the functional measure is introduced by means of a volume 
00 -form, has some advantages. The invariance of the mea­
sure easily can be studied as the invariance of the underlying 
Riemannian metric. Moreover, various versions of the Fu­
bini theorem seem to be powerful tools not only in those 

cases in which the volume of the gauge group must be ex­
tracted (the change of variable can be seen in fact as a special 
case of this theorem 13 ). After this brief motivation of meth­
ods used in this paper,let us summarize its content. 

In Sec. II the formal definition of functional measure in 
the spirit of Riemannian geometry is introduced. As exam­
ples, invariant measures on the space of scalar functions on 
an m-dimensional manifold and on the group of diffeomor­
phisms are studied. Some simple relations that immediately 
follow from definitions are obtained. 

In Sec. III a version of the Fubini theorem on finite­
dimensional manifolds is derived. The result is particularly 
appropriate in Polyakov's theory, but it can be applied to 
other gauge theories as well. 

In Sec. IV the results of Secs. II and III are applied to a 
detailed discussion of the Faddeev-Popov procedure in Po­
lyakov's theory. The exact form of the functional measure of 
the effective Liouville quantum field theory is derived. 

II. FORMAL FUNCTIONAL MEASURES 

The Riemannian measure induced by the Riemannian 
metric g on an m-dimensional manifold M can be defined by 
means of a volume m-form dwg

, which at the point xEM is 
determined by 

dOJ~ = dOJ! f\ '" f\ dOJ';, (2.1) 

where dOJ~ (i = l, ... ,m) form the basis dual to the orthonor­
malone {8OJix };"= J in the tangent space TxM at x: 

(2.2) 

dw~(8wjx)=8;. (2.3) 

Since the formula (2.1) is independent of the choice of an 
oriented orthonormal basis in T",M, this definition is correct. 

We introduce Riemannian functional measures by 
means of volume oo-forms, which are defined by formal ex­
tension of the formulas (2.1 )-(2.3) to infinite-dimensional 
manifolds. Let us start with the simplest case of a constant 
metric on a vector space. We consider the space <I> M of real 
functions on the compact m-dimensional Riemannian mani­
fold (M,g); we introduce the constant metric on <l>M: 

G~(8</J,84/) = f ..fgd mz8</J(z)8</J'(z), 

where </Je<l>M and D</J',8</JeT", <l>M=<I>M' In the space tangent 
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to <l>M one can choose the countable basis {6~k}k= 1 for 
which the extension of formula (2.2) has the form 

Gg(6~k,6~1) = 6k1 , k,IEN. 

However, such a basis is inconvenient (e.g., in the calcula­
tion of the determinant of elliptic operators it is convenient 
to use their integral kernels). Therefore we introduce the 
external orthonormal basis 

Gg(6~x,6~y) =6(x-Y)/~ 

and the dual one 

d~x (6~y) = 6(x - y)/~, 

(2.4 ) 

(2.5) 

where go is the additional Riemannian metric on M. The 
correct definition of an external basis in <I> M (as distributions 
on a manifold M) requires some scalar product in <l>M' In 
our case this product is defined by 

(~,~') = f ~ dmz~(z)~'(z). 
The expressions on the right-hand side of Eqs. (2.4) and 
(2.5) play the role of Kronecker's delta in Eqs. (2.2) and 
(2.3). So it is clear that under global diffeomorphism of M 
considered as a change of the chart of a functional manifold 
<l>M' go remains unchanged. 

Now we are ready to introduce the formal volume 00-

form related to the metric G g 

(2.6) 

In our approach, the well-known formal expression 

II d~(x) 
x 

can be interpreted as the volume 00 -form related to the met­
ric 

The advantage of the definition (2.6) (which, of course, is 
completely formal) is that by analogy with Riemannian 
measures on finite-dimensional manifolds we are able to 
build a formal calculus of such functional measures. Now we 
use the analogy mentioned above to find the relation between 
dOG8 and dOG8'. 

Let {6liJ;x }7'= l' {6liJ;x }7'= 1 be the orthonormal bases in 
TxM with respect to metricsg andg'. IfAij (x) is the transi­
tion matrix from the {()liJ;x}7'= l' to the {6liJ;x}7'= 1 basis, 

6liJ ix = Aij (x)6w ix, 
then 

dliJr = det A (x) • dliJ~ . 

The external orthonormal bases {6~xtEM' 
ofmetrics Gg,Gg' have the form 

6~x (y) = 6(x - y)/(gog) 1/4, 

6~~(y) =6(x-y)/(gog')114, 

and therefore, 
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6~x (y) = (~ yl4 (x)6~~ (y) 

=f~d~(g')1/4(X) 6(x-z) 6~'z(Y). 
g ~ 

Applying the formula (2.7) in its extended version, we have 

dOGg' = exp( ~ fin ~ 6(0)d~ )dO
G8

. (2.8) 

Note that 6(0) cannot be extracted from the integral 
without breaking coordinate invariance. Now we consider 
the nonconstant metric on <I> M : 

G~ (6~,6~') = f et/>(Z),fi d~ 6~(z)6~'(z). (2.9) 

Applying our method, it is easy to obtain the following rela­
tion: 

(2.10) 

where dO~8 (dOr) is the volume oo-form related to the 
metric Gg (Gg) at the point ~E<I>M' 

Now we consider left-invariant measures on the infinite­
dimensional Lie group. In the finite-dimensional case the 
left-invariant measures can be constructed as a Riemannian 
metric on the group manifold, which are completely deter­
mined by their values in the tangent space at a neutral group 
element. Without referring to a serious mathematical the­
ory, we can assume in our heuristic approach that all that we 
have mentioned above remains valid in the infinite-dimen­
sional case, too. As an example, we consider the group l!iJ M 

-the connected component of neutral element of the group 
of diffeomorphisms of M on M. We assume that on l!iJ M 

exists a topological structure such that l!iJ M can be thought 
of as an infinite-dimensional Lie group with a Lie algebra 
containing all vector fields on M (for M without boundary). 
The problem of finding such a structure we leave aside in this 
paper: however, this question is nontrivial (e.g., l!iJ M with 
the compact-open topology is not a Lie group). Let us intro­
duce on the space r M of all vector fields on M the scalar 
productHg: 

(2.11 ) 

where 6 V,6 V' Er M ~ T;d l!iJ M' We define the external ortho­
normal basis {6V};= I, ... ,m, xEM: 

Hg(6V;x,Mjy) = gOij (x) [6(x - y)/~] 

and the dual one 

dV~ (M'iy) = 6 J [6(x - y)/~]. 

We define the left-invariant volume 00 -form dOH8 by its val­
ue at the identity diffeomorphism 

dOr:/ = 1\ dV!!\ ... !\dV;. 
xEM 

Now we will seek a relation between dOH8 and dOHg'. Let 
ef(x),er(x) be "rn-beins" ofmetricg,g' with respect to the 
metric go: 
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gab (x)ef(x)eJ<x) =gOij(X), 

g~b (x)e;a(x)e ibeX) = gOij (x). 

Then the orthonormal bases have the form 

and 

<5 V;; (x) = ef(x) [<5(x - y)/(g. go) 1/4], 

c5V ;~(x) = e;a(x) [<5(x - y)/(g' • go) 1/4], 

<5 V;; (x) = (~ y/4e j(e'-I) ~<5V ;f(x). 

Finally we obtain 

dOH" = exp( 2: m fin ~ <5 (O)dzm )dO
Hg

. (2.12) 

III. THE SPECIAL VERSION OF THE FUBINI THEOREM 

In this section we will consider the version of the Fubini 
theorem that (after formal generalization to the infinite-di­
mensional case) gives the geometrical interpretation of the 
Faddeev-Popov procedure. 

Let 1" be a homomorphism of a compact n-dimensional 
Lie group G into the group of isometries of an m-dimension­
al (m>n) Riemannian manifold (M,g). We consider the 
integral 

Ll dal8 , (3.1) 

where I is a G-invariant function on M [i.e., 
I (1"a x ) =1 (x) for aEG] and dal8 is the volume m-form on 
M related to the metric g. For simplicity we assume that 
isotropy subgroups at every point of M are trivial (i.e., 
Hx = {e}). The canonical projectionp'=M-M/G in­
duces on M the structure oflocally trivial fibration (M, V,p') 
over the space of orbits V = M /G with a typical fiber G. We 
assume further that fibration (M, V,p') is trivial, so a global 
cross section (T: V -M exists. It is convenient to consider 
instead of (M,V,p') the fibration (M,:t = (T( V), p = (TOp'), 
which is, in fact, the principal fiber bundle with the structure 
group G. Since the fiber bundle (M,"1"p) is trivial, for every 
point xEM the unique aEG and UE"1, for which x = 1" a U exist. 

Our aim is to rewrite the integral (3.1) in terms of inte­
grals with respect to suitable Riemannian measures on the 
group G and the submanifold "1,. 

The first step in our derivation is the construction of a 
suitable expression of the volume m-form dal8 as an exterior 
product of two forms on M. Let us introduce in the bundle 
(M,"1"p) the family of global cross sections {(To tEG' ob­
tained by the action of the group G on the cross section 
(Te = id: 

(Ta: "1,3u-+O'a(u) =1"auEM. 

By means of these cross sections we can construct a G-invar­
iant decomposition of the tangent space at every point 
x = 1"auEM: 

(3.2) 

where W,; is the space tangent to the submanifold 
1:a = (Ta ("1,) CM at x and W; is the orthogonal comple­
ment of W; (with respect to the metric g). It is possible to 
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choose at every point xEM an orthonormal basis {<5aljx };,,= I 

in TxM such thatvectors<5aljx (i = 1, ... ,n) formG-invariant 
vector fields <5al; on M, and {<5al;x}7= 1 is a basis of W; for 
every xEM. Using the dual basis {dal~ };,,= I we can write the 
following expression of the form dal8 : 

dal~ = dal; 1\ '" 1\ dal';. (3.3) 

Now we will construct another m-form on M. Let us 
introduce the family of maps {1"u} UEl:' 

1"U: G3a_~(a) = 1"a uEp-I(u), 

and a family of left-invariant Riemannian metrics on G, 
{h u} UEl:' Let {&~}7 1 be a set of orthonormal (with respect 
to the metric h U) left-invariant vector fields on G. If h U de­
pends smoothly on u, those fields can be chosen in such a 
way that the fields {Of; }7 = I defined at the point x = 1" a uEM 
by the formula 

Of/x =1";c5s:;', i= 1, ... ,n, 
are smooth, G-invariant vector fields on M. Let us complete 
{Of;x }7= 1 to the basis {Ofjx};"= 1 in TxM by adding the vec­
tors 

<5t/x = <5al/x' i = n + 1, ... ,m. 

Using the dual basis {dt ~ };,,= 1 we can construct G-invariant 
formsonM: 

dal; = dt! 1\ ... 1\ dt ~, 

dal';=dt~+11\ ... Adt';, 

dal = dal1 A dal" . 

For these forms the following relations are true: 

d 1 -(U)-I*dh" al Ip~ I (u) - 1" al, 

dal" = p* dall:, 

(3.4 ) 

(3.5 ) 

(3.6) 

where dalh 
U is the volume n-form on G related to the metric 

h u and dall: is the volume (m-n) -form on the submanifold 2 
related to the induced metric. 

The transition matrix [Aij (x)] from the basis 
{c5al;x};"= 1 to the basis {OfiX}~ 1 has the following form: 

[
A(X) 

[Aij(x)] = 0 

where A(x) is an nXn matrix with elements 

Aij(x) =g(Ofix ,c5aljx ), i,j= 1, ... ,n. 

The relation between forms dal8 (3.3) and dal (3.4) can be 
easily computed [see formula (2.7)] with the result 

dal8 = det A . dal. 

Using Eq. (3.6) we have 

dal8 = det d . dalL Ap* dall:. (3.7) 

Now we will elaborate a more convenient form of det d. 
From the G invariance of g,Ofi ,c5alj (i,j = l, ... ,n) the G in­
variance of det A follows. So, det A as a function on 2 can be 
interpreted as the determinant of the linear operator 

Au: TeG=:=[§ ....... Wt CTu M , 
(3.8) 

A _piO u 
u - u T. e , 

calculated in the orthonormal bases of the spaces [§ and 
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w~. In the definition (3.8), P~ denotes the projection on 
the subspace W~ [see decomposition (3.2)] and ::1 is the 
Lie algebra of G. We introduce an adjoint operator A~, 
usually defined as 

h ~(A~8w,6s) =g" (8w,A,,8s), 

where 8WE W ~, 6sE::1. Since 

det A(u) = (det(A T A)(u»)1/2 = (det A~A" )1/2, 

(3.9) 

we can interpret det A ( u) as a square root of determinant of 
the linear operator A~ Au: ::1-.::1. 

Using the decomposition (3.7) we can apply the Fubini 
theorem on the manifold 10 to the integral (3.1): 

fMfdar = fM f ' det A· dw1 
Ap* dw~ 

(3.10) 

[the last equality follows from Eq. (3.5) and from the 
change of variable] . Finally, introducing a left-invariant ref­
erence metric h on G, we have the following version of the 
Fubini theorem: 

fMfdwg= Sa dw"· Lf(detA~Au)1/2( :")112 dw~. 
(3.11 ) 

This formula can be interpreted as the finite-dimensional 
version of the Faddeev-Popov procedure. If we choose the 
family of metrics {h u} ud such that h U = h for every UE:I, 

Eq. (3.11) has the more familiar form 

(3.12) 

In Ref. 11 a similar formula has been derived in which 
integration goes over the space of orbits. The advantage of 
the formula (3.12) is that the integration is performed over 
the gauge slice, parametrization of which is explicitly 
known. Moreover, the measure dw~ can be obtained easily as 
one related to the induced metric on l:. 

IV. APPLICATIONS TO POL VAKOV'S MODEL OF A 
BOSONIC STRING 

Let us briefly recall the basic concepts of Polyakov's 
method for calculating averages of functionals defined on 
surfaces. Such averages generally can be expressed in sym­
bolic form as follows: 

fy dOF[s]e- W[s], (4.1) 

where Y denotes some space of surfaces embedded in lRd 

and endowed with the intrinsic Riemannian metric. The sur­
face sEY can be described by its parametrization (x,g) , 
where x is the embedding of some fixed two-dimensional 
manifold M in lRd and g is the Riemannian metric on M. It is 
easy to see that if t/J is a diffeomorphism of M, then the para­
metrizations (x,g), (x°t/J, t/J*g) describe an identical surface 
in lRd with its intrinsic metric x J*g. Therefore we can write 
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Y = &' M/~ M = (vN'M XXM )/~ M = (vN' M/~ M )XM' 

where &' M is the space of the parametrizations, vN'M is the 
space of Riemannian metrics on M, X M is the space of em­
beddings of Minto Rd

, and ~ M is the group of diffeomor­
phisms (see Sec. II). It is clear that the integral (4.1) can be 
defined by means of the integral 

f d01 f dOXF[x,g]exp-W[x,gJ, 
J1M JXM 

provided that the measures d01 , dOx and the action 
W[x,g] are ~ M invariant. Polyakov's proposal is to intro­
duce d01 and dOx as the volume 00 -forms related to the 
Riemannian metrics G 1 on vN'M and G x on X M: 

Gg (8g,8g') 

= f ~ d 2Z[ ~ (g'cf!d + g'dgx _ g'b~) 

+ Ug'b~d ]8gab 8g;d 

(8g,8g'ETg J/ M' u is an arbitrary positive real number), 

G~(8x,8x') = f ~d2Z8xP.(z)8x'P.(z) 

(8x,8x'ETxXM)' These metrics are covariantly defined: this 
ensures the formal ~ M invariance of d01 and dOx. In dif­
ferent physical applications various spaces of surfaces and 
various actions are used.2

,4 For our purpose it is sufficient to 
consider the integral over closed surfaces 

Z= f d01 f dOx 
J1M JXM 

xexp( - ~ fM ~d2zg'baaxp.abxp.-1l f ~dr). 

Let us notice that the volume 00 -form dOX depends on 
gEJ/ M so the integration over X M must be performed first. 
In our case this integral is Gaussian and 

f1M doxexp( - ~ fM~d2zg'baaxp.abxp.) 
= (det .2'~) - d/2, 

where .2'~ denotes the Laplace-Beltrami differential opera­
tor 

.2'~ = - (1!~)aa~g'b ab 
acting on the space <I> M of scalar real functions on M. From 
the ~ M invariance of the action and dOx it follows that 
det .2'~ can be treated as a ~ M-invariant functional on vN'. 
Therefore we can apply the Faddeev-Popov method to the 
integral 

Z = 1 d01 (det.2'~) -d/2. 

1M 
(4.2) 

The first step is to introduce some gauge fixing conditions. In 
the conformal gauge proposed by Polyakov1 the gauge slice 
is the subspace of metrics conformal to some fixed metric g 
on M, i.e., gauge fixing condition has the form 

g=e~g, (4.3) 
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where ifJE<PM. However, in this gauge some problems con­
nected with the global topological structure of manifold M 
arise. If the Euler characteristic of M is non-negative, then 
the continuous group of diffeomorphisms (the so-called 
conformal group of M) exists. The action of a diffeomor­
phism from this group on e~g is equivalent to the change in 
the conformal factor e~, so Eq. (4.3) does not fix the gauge 
completely. If the Euler characteristic of Mis nonpositive, 
then there exist gauge slices that cannot be transformed into 
one another by any diffeomorphism of M. Such nonequiva­
lent slices are parametrized by the so-called Teichmiiller pa­
rameters. Because the dimension of the conformal group as 
well as the dimension of space of Teichmiiller parameters in 
every topological sector is finite, all problems mentioned 
above can be treated separately (for details see Ref. 2). 
These remarks justify the assumption that the conformal 
gauge is a good, global one, i.e., that the representation of 
every gs.ff M, 

g = "'·(e~g), t/lEg M' ifJE<PM' 

is unique. Let us denote by ~g the gauge slice defined by Eq. 
(4.3) and introduce the map 

II: 1M3g="'·(e~g)-II(g) =e~gE~g. 

According to our assumptions the fiber bundle (1 M,~g,II) 
is trivial and the analogy between the integral (4.2) and the 
integral (3.1) becomes complete, so the results of Sec. III 
can be used. 

First of all we must construct a g M -invariant orthonor­
mal decomposition of the space Y ~ tangent to 1 M at every 
point e~gE~g. The space Y r is the space of all second-order 
symmetric covariant tensors on M. Let us introduce the sub­
space of traceless tensors 

{ 
C? ~b } :Jr~ = 8gEY ~: It 8gab = 0 , 

and the subspace tangent to ~g 

% ~ = {8gET~: 8gab = 8ifJe~gab' 8ifJE<P M }. 

The spaces :Jr ~ and % ~ are the orthogonal one to another 
with respect to the metric G JI and the decomposition 

Y~ =:Jr~ EB%~ 

is the required one. 
Next, we introduce the family of left-invariant metrics 

{H g} gel:g on the group g M [see formula (2.11)]. In the 
case under consideration, the operator A [see formula 
(3.8)] has the form 

A~: r M-:Jr~, 
(A~8V)ab(Z) = (gacVb +gbcVa -2gab Vc)8VC(z), 

where g = e~g and V is the covariant derivative defined by g. 

The operator 2' ~ = At A~: r M-r M can be derived from 
the equation 

G~g(A~ 8V,A~ 8V') =Hrd(8v,2'~ 8V'), 

which can be rewritten in the following form: 

2574 J. Math. Phys .• Vol. 27. No.1 O. October 1986 

f ,fg dzZ ~ (ltCgbd + Itdghc - Itbg<d) 

X (A~8V)ab (z)(A~8V')cd (z) 

= f ,fg dzZ gab (2' ~ 8V)a(z)8v,b(z). 

After simple calculations one gets 

(2' ~8V)a(z) = - 2(Vc VC8t: + [Vb,Va]>8Vb(x). 

This is exactly the same operator which appears in Polya­
kov's consideration. I The determinant of 2' ~ (as well as the 
determinant of 2'~) can be evaluated by the conformal 
anomaly method up to terms independent of the conformal 
factor. 2•3 

Now we are able to explain usefulness of the construc­
tion involving the family of metrics {H g} gel:g on the gauge 
group g M' If we fix some metric in g M' for example Hg, 
then in order to extract the volume of g M from the integral 
(4.2) according to the formula (3.11), we must calculate the 

A. 

determinant of the operator 2' defined by the following for-
mula: 

Jf ~ = e2~ 2' ifJ. 

However, it is difficu~ to obtain full information about ifJ 
independence of det 2' ~. 

According to Eq. (3.10) the integral (4.2) can be re­
written in the following form: 

L.(L
M 

dO~)(det2'~)-d/2(det2'~)1/2dOl:;', (4.4) 

¢. 

where the abbreviations dO~ = dOH' g, 2'~ = 2'°r are 
~A e g 

used and dO: denotes the volume 00 -form on ~g related to 
the metric G on ~g induced by the metric G "'~. For 
8g = 8ifJe~g, 8g' = 8ifJ'e~gE%"" we have 

G ¢- (8g,8g') = G'1- (8ifJe"'g,8ifJ'e"'g) 
e g e g 

= 4u f e"'Jg dz2 8ifJ(z) 8ifJ'(z). 

Therefore by change of variables in the integral (4.4) we 
obtain the following expression: 

1M (L
M 

dO'" )(det 2'~) -d/2(det 2' ",) 1/2 dO?;", 

where the volume oo-form dO?;" is that defined in Sec. II. 
Now, applying the relations (2.10) and (2.12) we have 

z = r dOH" r dOGg[exp( - SL [ifJ,g]) 
)9)M )"'M 

xexp(~ fM ifJ(Z)8(O)dz2
)], 

whereSdifJ,g] = (d /2)ln det 2'~ - pn det 2'",. In order 
to obtain the "physical" partition function we must choose 
some metric on M to normalize the volume of the gauge 
group g M' It is natural to choose the metric go used in Sec. 
II in the definition of the external basis [see formulas (2.4) 
and (2.5)]. Applying the relation (2.10) once again, we 
have finally 
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Zphys = 1M dO
Gi[ exp( - SL [~,g] )exp( ~ fM ~(z)~(O)dr + f In ! ~(O)dr) l 

For completeness, let us rewrite the last formula applying the explicit form of the Liouville action S L [~,g], which has been 
derived in its general form by Alvarez in Ref. 2: 

Zphys = 1M dO
Gi[ exp( - 2~~ d (~ fM Ji d 2Z g"baa~ ab~ + fM Jt dz

2 R~ )) 

xexp( -f./- fM Jtd 2ze,p + S [iJ)exp( ~ fM ~(z) ~(O) dr + f In ! ~(O) dr )}, 

where S[i] denotes the part of S L [~,g] independent of ~. In other words, one can say that the effective quantum field theory 
in Polyakov's method of averaging is determined by the Liouville action Y L [~,g] and by the functional measure related to the 
nonconstant metric: 

G,p (~~,~~') = f Jt ciz2 e3,p(!Y ~~~~', 
where 

~EfPM' ~~,~~'ET,p fPM~fPM' 
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Usi~g a lin~ar combination of the three-body helicity states constructed by Wick, a new set of 
basts states 18 constructed that can be used to perform three-body calculations with relativistic 
treatment of the. spin. ~hese stat~ are diag~nal in the usual angular momentum quantum 
numbers of a patr liSi Jo whe~e ~i IS the orbItal angular momentum, Si the spin, andji the total 
angular momentum of the patr Jk. These states are used to write down the relativistic Faddeev 
equations obtaining two sets of uncoupled integral equations that are identified as 
c?rresponding to the states of positive and negative parity. It is also shown, by means of some 
slmp~e examples, that the relativistic recoupling coefficients reduce to the usual nonrelativistic 
ones If one neglects the effects of relativity. Some possible applications involving particles off 
the mass shell are discussed. 

I. INTRODUCTION 

The existing controversy in recent years regarding the 
polarization observables of the pion-deuteron system in the 
energy region of the P33 resonance l

-8 has given us a clear 
indication of the need for a careful treatment of the spin 
variables in the relativistic three-body problem.9 Such a 
treatment is obviously more necessary in the case of polar­
ization observables, since for these the spin degrees of free­
dom are the most relevant variables. Of course, in the case of 
spin-averaged quantities like differential cross sections 
these new effects will tend to be washed out to a large exten~ 
by the averaging procedure, and the standard method that 
treats the spin nonrelativistically may give reasonable results 
for these quantities. 10-13 

The relativistic Faddeev equations are normally written 
in the three-body c.m. frame, in terms of two-body ampli­
tudes which are known only in the two-body c.m. frame of 
each pair. Thus, it becomes necessary to express the three­
body equations in terms of relative coordinates of the pairs 
both for the space and spin variables. In the case of the space 
variables this is a well understood procedure,10.12 although 
this is not so for the spin part. The problem with the treat­
ment of the spin in a relativistic theory is that the spin projec­
tion of a particle is defined only with respect to its rest 
frame. 14 Thus, the quantum number v, which represents the 
projection of the spin in the three-body c.m. frame, actually 
means the projection that one will measure if one goes from 
the three-body c.m. frame to the rest frame of the particle. 
Similarly, the quantum number A, which represents the pro­
jection of the spin in the two-body c.m. frame, also means the 
projection that one will measure if one goes from the two­
body c.m. frame to the rest frame of the particle. Thus, if one 
wishes to express the spin variables defined in the three-body 
c.m. frame in terms of spin variables defined in the two-body 
c.m. frame, one must perform a well defined procedure that, 
however, is rather complicated if the spin projections are 
taken with respect to a fixed set of axes. 15.16 This transforma-

aj On leave from Escuela Superior de Fisica y MateIruiticas, Instituto Poli­
tecnico Nacional, Mexico 14 D.P., Mexico. 

tion on the other hand, is very simple if the spin projections 
are taken with respect to the direction of motion of the parti­
cle, which corresponds to the helicity convention. Thus, the 
quantum numbers A and v represent in this case the helicities 
of the particle in the two-body and three-body c.m. frames, 
respectively. The reason why the transformation is simple in 
the helicity convention is that the helicity quantum number 
is invariant under Lorentz transformations along the direc­
tion of motion of the particle as well as under rotations. 14.17 

The transformation of the spin variables in the helicity basis 
is given simply as 

ISA) = 2: d~A (fJ) Isv}, (1) 
v 

where d ~A (fJ) is a Wigner rotation matrix and the argument 
fJ is the angle between the velocities of the two-body and 
three-body c.m. frames as seen from the rest frame of the 
particle. 18 

As we will show in this paper, the relativistic Faddeev 
equations can be partial-wave decomposed including the 
transformation of the spin given in Eq. (1), by using a linear 
combination of the three-body helicity states constructed by 
Wick. 18 The resulting integral equations have the same de­
gree of complexity as the nonrelativistic ones and decouple 
into two sets that correspond to the states of positive and 
negative parity. They resemble even more their nonrelativis­
tic counterparts in the fact that they contain explicitly the 
familiar quantum numbers of a pair liSi ji' where Ii is the 
orbital angular momentum, Si the spin, andji the total angu­
lar momentum of the pair. 

We review briefly in Sec. II the three-body helicity for­
malism developed by Wick lB and in Sec. III introduce the 
new set of basis states that contain the familiar quantum 
numbers 'lSi ji' In Sec. IV we write down the integral equa­
tions for the three-body problem using these basis states and 
show that the equations decouple into two independent sets 
according to their parity. In Sec. V we make the connection 
between these states and the nonrelativistic ones for some 
simple examples, and show that for these cases the relativis­
tic states have the correct nonre1ativistic limit. Finally, in 
Sec. VI we discuss the application of this formalism for some 
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problems involving particles off the mass shell. 

II. WICK'S THREE-BODY HELICITY STATES 

The helicity quantum number is the projection of the 
spin along the direction of motion of the particle. 17

,18 The 
helicity basis states for three free particles have been con­
structed by Wick 18 as 

Iq;viJMp;AjAk im;) 

- ;
1TSk f . 0 dO d j. 0 ) = 1h1IJe SIn;; ":"Aj-Ak ( ; 

x 2.. dZJ-'j (/3] )d;""k (/3k) f d<pi sin 0; dO; d<p; 
VjVk 

X .!iJ~, _ A"M (tpi'O ;,tp ;) Ik;v;kjvjkk vk ), (2) 

where Si' Sj' Sk are the spins of the three particles, and 
k;,kj,kk and Vj,Vj,Vk are the momenta and helicities of the 
three particles measured in the three-body c.m. frame, 

k; + kj + kk = O. (3) 

The relative momentum between particle i and the center of 
mass of the pair jk measured in the three-body c.m. frame is 
of course qi = - ki' which has the polar components 
(qoO ; ,tp :>, while the relative momentum between particlesj 
and k measured in the two-body c.m. frame is Pi' which has 
the polar coordinates (p;,O;,<Pi)' The quantum numbers Vi> 
J, and M are the helicity of particle i, the total angular mo­
mentum of the system, and its magnetic projection, all of 
which are measured in the three-body c.m. frame, while the 
quantumnumbersAj,Ak,j;,andm; are the helicities of part i­
clesj and k, the total angular momentum of the pair, and its 
magnetic projection, which are all measured in the two-body 

c.m. frame. The functions d ZJ-'j (/3j) and d ;""k (/3 k) are the 
matrix elements of the unitary transformation (1) that 
transforms the helicity spinors from the three-body c.m. 
frame to the two-body c.m. frame, while the constants 1/ J are 
given by 

1/J = (2.1 + 1)/4'17V12• (4) 

The states (2) were constructed by Wick, by starting with 
the state lPiAjAk) ofparticlesj and k in the c.m. frame of the 
pair in which particlej has helicity Aj and momentump; in 
the positive Z direction, while particle k has helicity A k and 
momentum Pi in the negative Z direction. To obtain a two­
body state in an arbitrary reference frame, first an operator 
RO(Jp is applied, where RO(Jp = e - ifJrl

y produces a rotation 
along the Yaxis, that is, 

(5) 

where now Pi is a vector in the ZX plane at an angle 0i from 
the Z axis, and the phase e - i1Ts. is necessary in order to define 
consistently the helicity state of particle k in the "south 
pole" 0i = 1T. Next, a Lorentz operator Z is applied that 
transforms the state (5) into a state with total momentum q; 
= kj + kk along the positive Z axis, that is, 

ZRo(Jp IP;AjAk) 

= e i11'
S
k 2.. dZJ-'J (/3.;) d:~k (/3k) Ik]v]kk vk), (6) 

VJVk 
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and finally to the state (6) the operator e - ;<Prlz is applied to 
get a state where P; = (PoO;,<p;), since <p,,:! = tpp,' If now a 

rotation operator R~!(J!O = e - ;<pfJze - ;(JiJy is applied to the 
T' • 

state (6), one obtains a state with total momentum q; 
= (qoO ;,<p i), so that multiplying this state by the single­
particle state Ik;v;) = I - fLv;) corresponding to the third 
particle i with momentum - q, and helicity Vi' and taking 
the partial-wave projection, the state (2) is obtained. 

III. BASIS STATES CONTAINING THE ORBITAL 
ANGULAR MOMENTUM AND SPIN OF A PAIR 

One of the most attractive features of the three-body 
helicity states (2) is that the quantum numbers of the two­
body subsystemjk are all defined in the c.m. frame of the pair 
and therefore the matrix elements of a two-body operator in 
the three-body basis space can be related directly to the two­
body matrix elements in their own subspace. In most cases, 
however, for which a three-body relativistic formalism is re­
quired, the two-body amplitudes are given not in terms of 
helicity quantum numbers but in terms of the orbital angular 
momentum and spin quantum numbers of the pairs. There­
fore, it is necessary, for physical applications, to introduce a 
new set of basis states that are a linear combination of the 
states (2) such that they are eigenstates of the familiar oper­
ators I; and Si' where Ii is the relative orbital angular mo­
mentum of the pair and Si its spin. 

Since a two-body state in the liSi j; representation can be 
expressed as a linear combination of two-body helicity states 
of the form 17 

I/;S;im;) 

= '" -; _ ef,s,}, e SrkP' IA A' ) (
2/ + 1)112 

~ 2'. + 1 O,Aj-Ak Ap-Ak ] k];m; • 
Ah 'J, (7) 

if we take the same linear combination of three-body helicity 
states (2), we get the new states 

IqiviJMp;!iSij;mi) 

X 2.. d~Aj (/3]) d:~k (/3k) 
VjVk 

X f dtpisinO;dO;d<p;.!iJ~, A"M(<Pj>O;.tpj) 

X Ik;v;kjvjkkVk)' 

which contain the desired quantum numbers. 

(8) 

If we normalize the single-particle helicity states invar­
iantly in the mass shell as 

(k;v:/k;v;) = 2w; (ki )8(k; - k;)8 . , (9) 
1I,1Ii 

where 

W; (k) = (m; + k 2) 1/2, (10) 

then we have that for states IkiVikjvjkk vk) which satisfy the 
condition (3), we can write 
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8 W. (p.q. )aJ.(q. )0). (p. )O)k (p.) 
I I I I I J I I D( ~ _ .) 

( ) 
P, P, 

0) Pi 

where 

0) (Pi ) = (m] + p~) 1/2 + (mi + p~) 1/2, 

W; (Piqi) = [0)2(Pi) + qi] 1/2, 

W(Piqi) = (m~ + q~) 1/2 + [0)2(Pi) + q7] 1/2. 

(11 ) 

(12) 

(13) 

(14) 

If we apply Eq. (11) together with the orthogonality 
relations of the rotation matrices and of the Clebsch-Gor­
dan coefficients, it is easy to see that the basis states (8) are 
normalized as 

8 Wi (Piqi )O)i (qi )O)j (Pi )O)k (Pi) 

0) (Pi) 

X ~D(P; -Pi) ~2D(q; -qi)D,/v 
Pi qi ' , 

so that they form a complete set such that 

(15) 

1 ~ f 2 d 2 d 0) (Pi ) = ~ Pi Pi qi qi -----------
v,.TM 8 Wi (Piqi )O)i (qi )O)j (Pi )O)k (Pi) 

l;Sd;mj 

X IqiviJMpiliSijimi > (qiViJMp;!iSijimi I· (16) 

The recoupling coefficients between a state (8) of type i 
and a state oftypej can be obtained by applying Wick's result 
for the states (2) [seeEq. (35) of Ref. 18] and the transfor­
mation (7), so as to get in our normalization 

(qiviJ'M 'Pi1iSi jimi 1 qjvjJMpjIjSj jjmj > 

= DJ'J DM'M D[ W(Piqi) - W(Pjqj)] 

H(I 
2 ) 4w(Pi)O)(Pj) 

X -cosx 
Pi qiPjqj 

X (qiViP;!iSi jimi IqjVjpjljSj jjmj > J' (17) 

where W(Piqi) is the total energy of the system as given by 
Eq. (14), H is the step function, and the reduced recoupling 
coefficients are given by 

(qiViP;!iSi jimi IqjVjp)jSj jjmj > J 

= (21i + 1)1/2(2/
J
. + 1)1/2d~_vm_v(X) 

j 1" , 

Xd ~.i'A k _ A,~ (OJ)d ~ :,v, ( - Pi )d~.i'Aj (Pj )d~k'Ak (Pk)' 

(18) 

The arguments of the rotation matrices in Eq. (18) are the 
angles of the Wick triangle shown in Fig. 1, where the dis­
tances oi and oj represent the velocities of particles i andj in 
the three-body c.m. frame, the distances aj and ak represent 
the velocities ofparticlesj and k in the two-body c.m. frame 
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FIG. I. The Wick triangle. 

k 

of the pairjk, etc. Since the distances in Fig. 1 are defined in a 
non-Euclidean space, the sum of the internal angles of a tri­
angle is smaller than 'fT. We give in Appendix A the necessary 
formulas to construct the angles of Fig. 1 as a function of the 
relative variables Pi' qi>Pj' and qj. 

IV. PARTIAL-WAVE DECOMPOSITION OF THE 
RELATIVISTIC FADDEEV EQUATIONS 

As an example of the usefulness of the basis states con­
structed in the previous section, we will carry out the partial­
wave decomposition of the relativistic generalization of the 
Faddeev equations proposed by Aaron, Amado, and 
Youngl9 with the modification introduced by Garcilazo and 
Mathelitsch2o

,21 so as to use them also in the bound-state 
problem. These equations have the standard Faddeev form 

Ti = Ii + I Ii Go1j, 
jopi 

(19) 

where an invariant phase space must be used, and Go is the 
Green's function for three free particles which is obtained by 
putting the three particles on their mass shells and perform-

ing a dispersion integral in the total energy of the system ,fS 
or in the total energy squared S as proposed by Blanken­
becler and Sugar,22 so as to get in each case 

1 
GO(,fS;Piqi) = ,(20a) 

,fS - W(Piqi) + iE 

2W(Piqi) 
GO(S;Piqi) = S W2( ) .' (20b) 

- Piqi + IE 

where we have used Eq. (14) to express the total energy in 
terms of the relative variables Pi and q i . 

The two-body amplitudes Ii taken between basis states 
(8) are given in the case of central interactions (the general­
ization to the case of noncentral interactions is straightfor­
ward) as 

(q;v;J'M'p;I;S ;j;m;ll; Iqiv;JMp;!iSij;mi) 

= D , ,DJ'J DM'M Dl~llJS~s,D.,. 
'\I,'V, I , I I 1, j, 

XDmim, 2w;(qi)(1/q~)t5(q; -qi) 1:,sd'(p;,P;;qi)' 

(21) 
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where the partial-wave amplitudes t ~tSdi are obtained by 
solving the two-body Kadyshevski equation23 

tl,S;ji(p~'.p~.q.) = V~;S;ji(p~'.p~) 
I I' " I I "1 

i"" 2d w(Pj) 
+ pj ~j--------~--------

o 4Wj (Plql)Wj (PI)Wk (PI) 

X v~tS;Ji(p;',pj) 1 
.JS - W(Plql) + iE 

(22) 

where the phase factors are defined in Eqs. (9) - (14 ). The 
motivation20 for constructing the two-body amplitudes with 
the Kadyshevski equation23 instead of with the customary 
Blankenbecler-Sugar equation22 (both equations satisfy the 
necessary discontinuity relation, which is the only condition 
imposed by Aaron, Amado, and Young19

) is to make the 
theory applicable also in the case of the bound-state prob­
lem, since with the first choice the relativistic Faddeev equa­
tions possess spurious bound-state solutions and in some 

I 

special cases can give rise to unphysical behavior even in the 
scattering region.20

•
21 

If we now introduce complete sets of states ( 16) into Eq. 
(19) and use Eq. (21). we see that the three-body ampli­
tudes satisfy the set of two-dimensional coupled integral 
equations 

(qjVjJMp;!iS; im; I 1'; I~o) 

= (qjvjJMpjljSj jjmi Itj I~o) 

1 i"" i:Pj

+ + L L -- qj dqj Pj dpj 
j-F j vl,s}i/"j qj 0 :Pj-

X w2
(Pj) 

8 ~ (Pjqj )wj (qj )Wk (Pj )wj (Pj) 

X t1tSdi(p '. )G ( , ) I oPI,qj 0 Pjqj 

X <qjvjp;ljSdjmjlqjvjpjlj~hm)J 

X (qjVjJMpij~jjmjl1Jl~o), (23) 

where the variablep; is given in terms of the variables qj' qj' 
andpj as 

P; { [Sj (qjqjPj) - (mj + mk )2] [Si (qjqjPj) - (mj - mk )2] } 1/2, 

4Sj (qiqjPj) 
(24) 

Sj (qjqjPj) = [ W(Pjqj) Wj (q;)] 2 - q7, 

and the limits of integration p.± in Eq. (23) are 
J 

_ {[Sj± (qjqj) - (mk + ml)2] [Sj± (qjqj) - (m k - m j )2] }1/2 
p.±- , 

J 4sj ± (qjqj) 

Sj± (qiqj) = [W ± (qiqj) - wj (qj)]2 - qJ, 
W± (qjqj) =wj(qj) +wj(qj) +Wk(q; ±qj)' 

(25) 

(26) 

(27) 

(28) 

Finally, we will show that Eqs. (23) decouple into two sets of integral equations that correspond to the two cases of 
positive and negative parity. In order to do this, we first show in Appendix B that the reduced recoupling coefficients (18) 
obey the parity relation 

(29) 

) li+Sj+sk-J;( J'II IS . IT I"" ) qi -Vj JYipj I j}; -mi j '('0 

also obey Eq. (23). Thus, if we define the two linear combinations of amplitUdes that are also solutions of Eq. (23) as 

(qlviJMpiliSdjmiITjl~o) ± 

= (qjvjJMp;!jSj jjm j I Ti I~o) ± ( 
(30) 

they obviously obey the parity relation 

(q;viJMpJISjjlmiITil~o) ± ± (- )J+li-Si-ji(q; - vIJMp;!IS;j,. - mil1';l~o) ±' (31) 

so that only approximately half of them are linearly independent, with the remaining ones given by Eq. (31). Thus, for 
example, if particle i has spino!, only the amplitUdes with Vi !, mj = - jj' - ji + 1, ... , + ji are linearly independent, while 
those with Vi = -!. mj = - j;. - j; + 1, ...• + jj can be obtained by using Eq. (31). The integral equations for the + and 
- amplitudes (30), are completely decoupled and they differ from Eq. (23) in that now the recoupling coefficients are 

(q;v;p;ljSI jim; Iqjvjp/jSj jjmj ) J 

= (qiVjp;I;SijjmjlqjvjpijSdjm)J ± (- )J+~-Sj-jj(qjVjp;liSdimjlqj - VjPj~~jj - mj)J' (32) 
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and the sum over the magnetic quantum numbers Vj' mj in 
Eq. (23) goes only over the set of linearly dependent ones. 

In order to see that the amplitudes (30) correspond to 
the two cases of positive and negative parity, we expand 
these amplitudes in terms of a new set of basis states that 
contain explicitly the orbital angular momentum between 
particle i and the two-body subsystemjk. If we use the fact 
that the quantum numbersjj and mj represent the spin and 
helicity of the pairjk, we can use the inverse of the transfor­
mation (7) to expand our states (8) as 

~ (2L j + 1 )112 CLiZ,J CS,jiZi 
IqjvjJMpJjSjjjm j ) = ~ 2J 1 O,Vi- mi vi,-mi 

LiZi + 
x IqjLjZjJMpj/jSjjj), (33) 

whereL j is the orbital angular momentum between particle i 
and thepairjk, andZj its effective total spin. From Eq. (33), 
we see that 

Iqj - vjJMpj/jSd - m j) 

~ )Li-J+Si+ji (2L j + 1)112 CLiZ,J CS,j,z, 
= ~ ( - 2J 1 O,vi-mi Vi.- mi 

LiZi + 
X IqiLiZ;JMpJiSiji)' (34) 

so that using Eqs. (33) and (34) into Eq. (30), we get that 

(qjvjJMp)jSj jjm j I Tj I~o) ± 

= ~ [1 + (_ )/i+Li] (2L j + 1)112 C~i:'~m 
~ - 2J+l" , 
LiZ; 

X C~;,:i mi (qjLjZjJMpJjSj jj I T j I~o), (35) 

which clearly shows that the amplitudes (30) possess the 
correct parity behavior. 

V. EXAMPLES ILLUSTRATING THE RELATIVISTIC 
TRANSFORMATION OF THE SPIN 

The basis states that we are discussing in this paper dif­
fer from the usual nonrelativistic ones apart from the use of 
relativistic kinematics, essentially in that they take into ac­
count the relativistic transformation of the spin between the 
two-body and three-body c.m. frames. This effect is con­
tained totally in the recoupling coefficients (18), so that by 
comparing these coefficients with the corresponding nonre­
lativistic ones in some simple cases, one can isolate the effects 
due to the transformation of the spin. 

The recoupling coefficients similar to those defined by 
Eqs. (32) and (18) are in the nonrelativistic case24 given by 

(qjLjSjJjP;!jSi ji IqjLjsjJjpjljSj jj) J 

= [(2jj + 1 )(2jj + 1 )(2Jj + 1) 

X(2Jj + 1)(2Si + 1)(2Sj + 1)]1/2 

XL (- )Sj+sr s(2S+ 1) 
LS 

X {~i ~: ~} {~ ~;J Ls} 
ji Ji J jj Jj 

SS A 1;L;lh( ) X W(SjSkSSj; i j) ij,L PjqiPjqj' (36) 
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X Y!i,M- mi(qi) YIJm/Pj) YLpM - m/qj), (37) 

where the order of the coupling is indicated by the 9j sym­
bols. 

As a first example let us consider the case of three parti­
cles of spin-! such that the total angular momentum of the 
system is J = !, while the quantum numbers of the pairjk are 
Ii = Sj = jj = 0 and similarly those of the pair ki are Ij = Sj 
= i = O. This corresponds for example to the configuration 

of the triton in which the nucleon pairsjk and ki are both in 
the I So channel. The recoupling coefficients for the cases of 
positive and negative parity correspond, respectively, to hav­
ing Li = Lj = 0 and Li = Lj = 1, and from Eqs. (36) and 
( 37) one finds that they are given by 

(qi OBpiOOO lqj OBpjOOO)1I2 = -!, (38a) 

(qi I! !PiOOOlqj I! !pjOOO) 1/2 = - !qi • qj = -! cos X. 

(38b) 
In the case of our relativistic basis states, we find from Eqs. 
(32) and (18) that the positive and negative parity recou­
pling coefficients for these states are 

(qi!pjOOOOlqj!pjOOOO) II2± 

= (qi~PiOOOOlqAOOOO)1I2 

± (qi!PiOOOOlqj - !OOOO)1/2 

-! [d ~i72) (112) (x)d ~i72) (1/2) (Pi + Pk + Pj ) 

± d ~~72) - (1/2) (x)d ~~72) - (1/2) (Pi + Pk + Pj )]. 

(39) 

The recoupling coefficients (39) are different from the cor­
responding coefficients (38) even if one uses relativistic kin­
ematics to calculate the angles in (38). In particular, the 
positive parity coefficient (38a) is still equal to a constant, 
while the corresponding coefficient (39) depends on the an­
gles of Fig. 1, which are functions of the relative momentap" 
q . p. and q .. The difference between the coefficients (38) I' J' ] . 

and (39) is due precisely to the effect of the so-called Wtgner 
rotation of the spin in a Lorentz transformation, 14,18 which is 
the difference between 1T and the sum of the internal angles of 
a triangle in Fig. 1. We can see this easily, by using nonrelati­
vistic kinematics to calculate the angles in Eq. (39), so that 
the Wick triangle becomes an ordinary triangle and the sum 
of the internal angles of the triangles ijo and ijk in Fig. 1 are 
both equal to 1T and therefore pj + Pk + Pj = X, so that the 
recoupling coefficients (39) become 

(qi!pjOOOOlqAPjOOOO) 1/2 ± 

---+ -! {( d ~~72) (1/2) (X)] 2 ± [d ~i72) _ (1/2) (X) ] 2} 
NR 

= -! WI +cosX) ±!(1-COSX)] 

= - ~ {co:x}' (40) 

which are precisely the results (38). 
As a second example let us consider the case when parti­

cles i and j have spin-! and particle k has spin-O and the 
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orbital angular momentum of both pairs Ij = lj = 0, so that 
Sj = jj = Sj = jj = ~, while the total angular momentum is 
J = o. The positive and negative parity recoupling coeffi­
cients for the nonrelativistic case correspond to having 
L j = Lj = 0 and L j = Lj = 1, respectively, which from Eq. 
(36) are given by 

(qjO~ ~pjO~ ~lqjO! ~PjO! !)o = - 1, 

(qj I! !pjO! !Iqj I! !PjO~ !)o = qj • qj = cos X· 

(41a) 

(41b) 

In the case of the relativistic basis states, we find from Eqs. 
(32) and (18) that the positive and negative parity recou­
pling coefficients for these states are 

(qdpjO!! !lqApjO!! Po± 
= (qj!pjO! ! !lqApjO! ! Po 

+ (qdpjO!! !Iqj - !pjO!! - !)o 

= - [d ~~72) (112) (OJ - {3j) d ~~72) (112) (1T - OJ - {3j) 

+d~~72) -(112) (OJ -{3j) 

X d 1~2(1I2) (112) (1T - OJ -{3j)] 

= - d g72) (1/2) (OJ - {3j + 1T ± OJ ± {3j). (42) 

The recoupling coefficients (42) are again different than the 
coefficients (41) even if one uses relativistic kinematics to 
calculate the angles in Eq. (41). Again, it is easy to see that if 
we use nonrelativistic kinematics, then the sum of the inter­
nal angles in the triangles of Fig. 1 is equal to 1T, so that OJ 
+ {3j = X = 1T - OJ + {3j and 

(qj~pjO~! ~lqj!pjO!! Po± 

{ 
- d ~~72) (112) (0) } 

-;; - d g;2) (1/2) (21T - 2X) 
(43) 

which are identical to the results (41). 
In the general case of arbitrary angular momentum and 

spins of the particles, we have checked numerically that the 
recoupling coefficients given by Eqs. (32) and (18), reduce 
to the nonrelativistic ones if one calculates the angles of the 
Wick triangle with nonrelativistic kinematics. 

VI. APPLICATIONS WITH PARTICLES OFF THE MASS 
SHELL 

We will discuss, in this section, the use of Wick's three­
body states for processes in which a pion or a nucleon is 
allowed to go off the mass shell. These two cases are the most 
relevant ones in the few-body problems that one encounters 
in medium energy physics. 

As a first example let us consider the process Ntl.-+Ntl. 
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f q. t-q· ·1 .J 
M. J.Lj 1 

\k , , , 
Mj J.Lj 

~ - q. ! q. 
-I -J 

( a) 

t q . i -q. • 1 .J 

J.Lj 

\--------
M. 

J 
~ - q. ~ q. 

·1 .J 

( b) 

FIG. 2. (a) The process NI:J.~NI:J.. (b) The process 1Td~NI:J.. 

shown in Fig. 2(a), where a pion is exchanged between two 
deltas. This diagram is given by 

F M,I',.Mjl'j (qj,qj) 

= ul',kv WMJ - l/(t - m; + iE)] WZI,k'1ul'j' (44) 

where t = k vkv is the invariant mass squared of the off-shell 
pion, Ul'j is a spinor of helicity /-lj' and W Mj is a Rarita­
Schwinger spinor ofhelicity ~. The partial-wave projection 
of the amplitude (44) with angular momentum J is 

F J 
M j J'j,Mj Jlj 

= II d cos 0 d~j-I'i'M,-I" (O)FM'I'i>Mjl'j (qj,qj). 
-1 

(45) 

Ifwe use our basis states to calculate this partial-wave ampli­
tude, we would proceed as 
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where 

W k W(Piq;> -wi(q;) -wj(qj), (47) 

and the vertex function is 

(JMMi Iti Iq;vjJ'M 'P;!iSj jjm!) 

= DJJ' DMM , DM,m, DI','II, D"l Ds, (112) Dj, (3/2) 2w; (qj) 

1 [w.(P) + m. ]112 
X 2D(qj -q;>Pi J ~. } 

qi mJ 

(48) 

We found numerically that Eqs. (44) and (45) and (46)­
( 48) give identical results provided one evaluates the kine­
matics (10)-( 14) and the angles in Appendix A, using for 
the mass of the pion not the physical mass squared m;", but 
the off-shell mass squared t. The same result is obtained if 
one replaces in Fig. 2(a) one or both deltas by nucleons. 
Thus, Wick's formalism can be used whenever the particle 
that is going off mass shell is spinless, one only has to remem­
ber to use the off-shell mass to calculate the kinematics [ex­
cept when evaluating the function (47), where the physical 
mass must be used]. Thus one could use this formalism, for 
example, to include the fully off mass shell pion in the three­
body treatment of nucleon-nucleon scattering proposed by 
Kloet et al. 25

-
27 

As a second example let us consider the process 
1Td-+N l::. shown in Fig. 2 (b), where a nucleon is exchanged 
between a deuteron and a delta. This diagram is given by 

FM . . M(qi,q!f) = V" [q~e~A(t) + yy€7JB(t)] 
tPV J rt 

y71k71 +M . WI', (49) 
X M2 . qJI' M, 

t- +le 

where VI'I is a conjugated spinor with helicity Iti' €7J is a spin-
1 spinor for the deuteron with helicity M;, and A (t) and 
B(t) are the NNd form factors that, in the nonrelativistic 
limit, can be related to the S- and D-wave components of the 
deuteron wave functions ipo and ip2' as28 

A(t) = (p2 +MBd ) [ipo(p) + (1/~)ip2(P)], (50) 

B(t) = (p2 + MBd ){ - (3M /p2)( 1/~)ip2(P) 

+ (l/2M) [ipo(p) + (l/~)ip2(P) n, (51) 

where B d is the binding energy of the deuteron, and P is the 
magnitude of the relative three-momentum of the two nu­
cleons in the deuteron rest frame which is given in terms of t 
as 

p2 = (m~ + M2 _ t)2/4m~ M2. (52) 

In order to use Wick's helicity states to try to evaluate the 
process of Fig. 2(b), we first write the numerator of the 
nucleon propagator as 

yVky + M y>(ko Wk) + y>Wk - 'Y • k + M 

(53) 

and neglect the first term in the right-hand side of Eq. (53). 
This approximation effectively replaces in the numerator of 
the nucleon propagator, a particle with four-momentum 
(k o,k) which is off the mass shell by an on mass shell particle 
with four-momentum (wk,k). Thus, with this approxima-
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tion we can now use Wick's states to evaluate the process of 
Fig. 2(b) using Eq. (46), where the NNd vertex function is 
given by 

(qjvjJ" M "pJjSjjjmj IJMM; > 

= Dw DMM" DMm Dov DSI Dj ]2wj (qj) {l/qJ) 
J J J J j 

XD(qj - qj)2~(pJ + MBd )ip,} (Pj)' (54) 

We show in Fig. 3 the partial-wave amplitudes for this pro­
cess F{1I2) (112),0' which have been calculated with the deu­
teron wave function of the Paris potential.29 The solid lines 
are the exact amplitudes given by Eqs. (45) and (49), and 
the dashed lines the results obtained using Eq. (46) and the 
approximation (53). As we see, the results obtained with 
Wick's states are quite close to the exact results in the energy 
region considered. The dotted lines in Fig. 3 are the results of 
Eq. (46) when the kinematics is calculated not with the 
physical mass squared M2, but with the off-shell mass 
squared t. 

Thus, we can conclude from this discussion that Wick's 
states provide also a good approximation to describe off 
mass shell particles at medium energies. 

APPENDIX A: KINEMATICS OF THE WICK TRIANGLE 

In order to find the angles of the Wick triangle shown in 
Fig. 1, one must first calculate the sides of the triangle where 

2 ........ 

......... 
<I 1 0~_..I.-_..l..-_.L._..l......_-l-_-'-_~_-; 

"0 
F 

J=5 

-1 

200 300 

J=3 

400 

rlab (MeV) 
11" 

- - -: :--. ,-, - - -
J = 1 

500 600 

FIG. 3. Partial-wave amplitudes F~112) (112).0 for the process 1Td-Nt.. The 
solid lines are the exact results, the dashed lines the results ofEq. (46), and 
the dotted lines the results of Eq. (46) using the olf-shell mass squared t to 
calculate the kinematics. 
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the segments between points represent relative velocities, so 
that in terms of the definitions ( 10), (12), and (13) we have 
that 

Vib =p/wi(p), (AI) 

Vbk = p/wk (Pj)' (A2) 

Vja = pJWj (Pi)' (A3) 

Vak =pJWk(Pi)' (A4) 

Vio =qJWj(qi)' (A5) 

Vja = q/Wj (qj)' (A6) 

Voa = qJW; (Piqj), (A7) 

Voh = qjlHj (Pjqj ). (A8) 

The larger segments are calculated using Einstein's addition 
law for velocities, as 

Vjk = (V jb + Vbk )/( 1 + VibVbk)' 

Vjk = (Vja + Vak )/(1 + VjaVak)' 

(A9) 

(A1O) 

Via (Vio + Voa )/( 1 + VioVoa ), (All) 

Vjb (Vja + Vob )/(1 + VjoVob ). (AI2) 

Finally, the angles of the Wick triangle are obtained by using 
the cosines law for this non-Euclidean space, as 

[ 
(1 - VTa) 1/2(1 - VTk) 1/2] 

cos Pi = _1_ 1 - -------:--:-:---
( 1 - V2

a
k ) 1/2 ' ViaV jk 

cosP
j 
= _1_ [1 

VjbVjk 

COSPk = _1_ [1 _ 
VikVak 

cos OJ = _1_ [1-
VjaVak 

cos OJ = _1_ [1-
VibVob 

(1 - VJb) 1/2(1 - VJk) 1/2] 

(1- V~k)1/2 ' 

(1 - VTk) 1/2(1 - V;k) 1/2 ] 

(1- V;a )1/2 ' 

(1 - VTa )1/2(1 - V;k )1/2] 

(1- V;k)1/2 ' 

(1-V;b)1/2(l_V~)1/2] 

(l-v;o)1/2 ' 

(A13) 

(AI4) 

(AI5) 

(AI6) 

(AI7) 

cos (1T-X) = _1_ [1-
VjoVab 

(l-V70)1/2(l-V!b)1/2] . 

(1_V;,,)1/2 

(AI8) 

APPENDIX B: DERIVATION OF EQ. (29) 

We will show here that the recoupling coefficients (18) 
obey the parity relation (29). In order to show this, we first 
notice that the Clebsch-Gordan coefficients obey 

(Bl) 

(B2) 

while from the property of the rotation matrices 

d j (0) = (- )P-vd j (0) (- )V-Pd j (0) 
1'" - J.t. - v - J.t. - v , 

(B3) 

we get that 
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d-:",_ vpmJ vJ (X) d ~,.A.J A.k (OJ) d ~1'A.k _ A i(Oj) 

xdi! v ( - Pi )d~.lj(Pj )d:k " (Pk) 
I' I r~ Ir;IAk 

_ ( )2vJ -2A. kd J ( ) 
- - m,+vjt-mj+vj X 

X d j, m" - Aj + A.k ( OJ ) d ~ ml' _ A k + A i ( OJ ) 

Xd
s
, Ai. _ Vi ( - pj) dS~ VI' -A

J 
(Pj ) dS~A;" -Ak (h), 

(B4) 

SO that substituting Eqs. (B 1 ), (B2), and (B4 ) into Eq. (18) 
and noticing that 

(_ )Sj-Vj+Sk+Ak( )2vj-2A. k = (_ )Sj+Vj+Sk Ak, 

(B5) 

we get immediately Eq. (29). 
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A layer stripping procedure for solving three-dimensional SchrOdinger equation inverse 
scattering problems is developed. This procedure operates by recursively reconstructing the 
Radon transform of the potential from the jump in the Radon transform of the scattered field 
at the wave front. This reconstructed potential is then used to propagate the wave front and 
scattered field differentially further into the support of the potential. The connections between 
this differential procedure and integral equation procedures are then illustrated by the 
derivations of two well known exact integral equation procedures using the Radon transform 
and a generalized Radon transform. These procedures, as well as the layer stripping procedure, 
are then reduced to the familiar Born approximation result for this problem by neglecting 
multiple scattering events. This illustrates the central role of the Radon transform in both 
exact and approximate inversion procedures. 

I. INTRODUCTION 
The inverse scattering problem for the Schrodinger 

equation in three dimensions with a time-independent, local, 
nonspherically symmetric potential has a wide variety of ap­
plications. In particular, the inverse seismic problem of re­
constructing the density and wave speed of an inhomogen­
eous isotropic acoustic medium from surface measurements 
of the medium response to an excitation can be formulated as 
a Schrodinger equation inverse scattering problem, as was 
done by Coen et al. 1 Other applications include quantum 
mechanical particle scattering problems, in which particles 
are treated as wave functions, 2 and the propagation of elec­
tromagnetic waves in the ionosphere. 3 

There are several methods available for solving the in­
verse scattering problem. The most important of the exact 
methods are generalized Gel'fand-Levitan and Marchenko 
integral equation procedures of Newton,4 and the coupled 
integral equation procedure of Moses.5 Newton's Mar­
chenko integral equation procedure has been applied to an 
inverse seismic problem in (Ref. 1). Moses5 gave the first 
exact (in principle) solution to the inverse scattering prob­
lem, but Moses's procedure cannot be implemented in closed 
form. Other exact methods have been given in Refs. 6-12; 
this paper focuses on the exact procedures given in Refs. 4 
and 5. 

An alternative approach is to use theftrst Born approxi­
mation, in which the wave field inside the support of the 
potential is approximated by the incident field being used to 
probe the potential. This approach has been applied to the 
variable-velocity wave equation by Cohen and Bleistein,13 
Devaney,14 and others. 

All of these methods have shortcomings. Newton's inte­
gral equation procedure requires that the scattering ampli­
tude (the far-field response) be measured for all incident and 
outgoing directions and all frequencies. This makes it 
unsuitable for inverse seismic problems, for which data are 
only available in the near field and in backscattered direc­
tions. Furthermore, the complete specification of the scat-

tering amplitUde results in an overdetermined problem, so 
that a slight corruption of the data may result in an inadmis­
sible scattering amplitude. Moses's coupled integral equa­
tions cannot be solved in closed form; power series expan­
sions are required for various quantities, and as a result a 
considerable amount of computation is required to deter­
mine each higher-order correction term. The Born approxi­
mation methods, although requiring less computation, em­
ploy a single scattering approximation, and thus are only 
valid for problems with weakly scattering potentials. 

A completely different approach to solving the Schro­
dinger equation inverse scattering problem is layer stripping. 
Layer stripping is a differential procedure, in contrast to the 
above integral equation procedures. A layer stripping algo­
rithm works by recursively reconstructing the potential as 
the probing wave penetrates it. By employing causality and 
the inherent structure of an inverse scattering problem, a 
layer stripping algorithm requires much less computation 
than the integral equation procedures of Newton and Moses. 
It also requires only near-field, backscattered data, making it 
ideal for applications to inverse seismic problems, and avoid­
ing the overdetermined problem to which Newton's proce­
dure is applicable. A layer stripping algorithm has been pro­
posed in Yagle and Levy15; however, this algorithm is 
numerically untested. 

The objectives of this paper are twofold: (1) to present a 
new layer stripping algorithm for solving the Schrodinger 
equation inverse scattering problem; and (2) to present an 
approach, based on the Radon transform, for interpreting all 
of the various methods mentioned above for solving the in­
verse scattering problem. We thus show, for the first time, 
how the integral-equation methods of Newton and Moses, 
the Born approximation approach, and the layer stripping 
method presented in this paper are all related to each other. 
In this way, the common basis of all of these seemingly unre­
lated approaches is exposed, resulting in new insight into 
their operation. 

The paper is organized as follows. The Radon transform 
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is quickly reviewed in Sec. II, including a generalized Radon 
transform noted in Rose et 01.9 The basic SchrOdinger equa­
tion inverse scattering problem that is the subject of this 
paper is set up in Sec. III, and the basic integral equation 
procedures of Newton and Moses for solving this problem 
are specified. In Sec. IV a new layer stripping procedure for 
solving this problem is presented and discussed. In Sec. V the 
same basic equations used in deriving the layer stripping al­
gorithm are used to derive the integral equation procedures 
of Newton and Moses. This illustrates that all three proce­
dures have a common basis. The basic Born approximation 
result is also derived from all three procedures by neglecting 
multiple scattering events. Finally, Sec. VI concludes by 
summarizing the results of the paper and noting directions in 
which further research is needed. 

II. THE RADON TRANSFORM 

The Radon transform of a function in three-dimensional 
space is the integral of the function over a plane. It is thus a 
slice or sample of the function. Specifically, the Radon trans­
form ~{/(x)} of a function/(x) is given by 

~{/(x)} =f(T,e) = f /(X)8(T - e' x)dx. (2.1) 

Given the projections f( T,e) for all T and all angles e, the 
function/(x) may be recovered by the inverse Radon trans­
form 

lex) = ~-I{f(T,e)} 

(2.2) 

whereS 2 is the unit sphere in R 3. This result is originally due 
to Radonl6

; a good treatment is Deans. 17 
Following Rose et 01.,9 a generalized Radon transform 

can be defined from the fact that the solutions of the Schro­
dinger equation in the absence of bound states form a com­
plete set. If u (x,k,e) is a solution of the SchrOdinger equa­
tion, where e is the direction of initial probing, and/(x) is 
square integrable, then we may write 

lex) = (21T)-3 Lao r u(x,k,e) 
o Js' 

xJ u*(y,k,e)/(y)dyd 2ek 2dk, (2.3) 

and if u (x,k,e) is extended to negative k by u (x, - k,e) 
= u*(x,k,e) then an inverse Fourier transform from k to t 

u(x,t,e) = Y-I{u(x,k,e)} = - u(x,k,e)e,kt dk 1 fao . 
21T - ao 

results in 

lex) = - (8r)-1 f_aoao Is,f u(x,t,e) 

a2 

X -2 u(t,e,y)/(y)dyd 2edt, 
at 

which can be written as the pair of equations 
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(2.4) 

(2.5) 

f(t,e) = Y{/(x)} = J u(y,t,e)/(y)dy, 

lex) = Y-I{f(t,e)} 

which is the generalized Radon transform pair. 

(2.6a) 

In the particular case where u (x,t,e) is chosen to be the 
impulse 8 (t - e • x), then it is clear that the generalized Ra­
don transform pair (2.6) reduces to the standard Radon 
transform pair (2.1) and (2.2). This explains why (2.6) is 
termed a generalized Radon transform. 

111. THE INVERSE SCATTERING PROBLEM 

The inverse scattering problem considered in this paper 
is as follows. The wave field u (x,k) satisfies the Schrodinger 
equation 

(a+k2- V(x»)u(x,k) =0, (3.1) 

where the potential Vex) is real-valued, smooth, and has 
compact support. It is also assumed that Vex) does not in­
duce bound states; a sufficient condition for this is for Vex) 
to be non-negative. 

Scattering solutions of (3.1) are given by the Lippman­
Schwinger equation 

u(x,k,e;) = e-;ke,x - f (41Tlx _ yl)-I 

Xe - jk Ix - yl V(y)u(y,k,e; )dy, (3.2) 

where the incident field is an impulsive plane wave propagat­
ing in the direction of the unit vector e;. Letting x = Ixles 

and taking Ix 1---+ 00 we have, in the far field, 

u(x,k,e;) = e-jke,x + (e-;k lx l/41Tlxl) 

xA (k,es,e;) + O( Ixl-2), (3.3) 

where 

A (k,es,e;) = - f e;ke,yV(y)u(y,k,e;)dy (3.4) 

is the scattering amplitUde for incident direction e j and scat­
tered direction es • 

An inverse Fourier transform of (3.1) yields the plasma 
wave equation 

(a - :t: - V(X») u(x,t) = 0. (3.5) 

This equation models the propagation of electromagnetic 
waves in the ionosphere.3 An inverse Fourier transform of 
(3.3) results in 

u(x,t,ej ) = 8(t - e; • x) + (41Tlxl)-1 

XR(t-es 'x,es,e;) +O(lxl-2), (3.6) 

where R (t,es,e;) is the inverse Fourier transform of 
A (k,es ,e; ). Since R ( . ) represents the time response in the far 
field to the probing impulse 8(t - e; • x), it is termed the 
impulse response. 

Exact solutions to this inverse scattering problem have 
been given by Newton4 and Moses5 (and others as well). 
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Both of these methods involve the solution of integral equa­
tions. Newton's method is to solve the Marchenko integral 
equation 

us(x,t,e;)= f foc M(t+r,e.,e;)us(x,r,-e.) 
Js' - e,x 

Xdrd 2es + 1 M(t - es • x,es,e; )d 2es 

s' (3.7) 

for the scattered field Us (x,t,e;), which is defined by 

u(x,t,e;) = D(t - e; • x) + Us (x,t,e;). (3.8) 

In (3.7) the quantity M(t,e.,e;) is obtained from the scatter­
ing data using 

1 a 
M(t,es,e;) = - ----=:2-R(t,e.,e;). (3.9) 

811 at 
Finally, the potential Vex) is recovered from the scattered 
field using the miracle equation4 

Vex) = -2e; ·Vus(x,t=e; ·x,e;). (3.10) 

Note the redundancy in this equation. Newton4 notes that 
the right side of this equation characterizes admissible scat­
tering amplitudes: only a subset of all possible A (k,es ,e; ) 
(five independent variables) can result from all possible 
Vex) (three independent variables). Thus the inverse scat­
tering problem solved by this method is overdetermined; 
clearly there is a great amount of unnecessary computation 
to reconstruct V( x). In addition, the use of far-field data and 
transmission data makes this procedure unsuitable for solv­
ing inverse seismic problems, as noted in (Ref. 1). 

Moses's method is to solve the coupled set of integral 
equations: 

T(k,k') = V(k,k') + f V(k,kH) 

X y(k,2 - k H2) T(k H ,k')d k H, (3.11) 

W(k) = b(k) + f T( - k,k') [1 (k)y*(k'2 - k 2) 

+ 1( -k)y(k,2_k 2)]T*(k,k')dk', (3.12) 

V(k,k') = W(k' - k)/2), (3.13) 

where b(k) is the backscattering amplitude 

b(k) =b(k,e) =A(k,-e,e), k>O, (3.14) 

1 (k) is the Heaviside or unit step function, and y(k) is de­
fined by 

y(k) = -hTD(k) +Plk= lim (lIk+iE), (3.15) 
E_+O 

which is the Fourier transform of 1 (t) (P denotes the 
Cauchy principal value). The potential Vex) is recovered 
from W(k) using the inverse Fourier transform 

Vex) = (211') -3 f W(k)e- 2Ikx dk. (3.16 ) 

Note that Moses's method is not overdetermined, since only 
the backscattering amplitude b(k), not the entire scattering 
amplitude A (k,e. ,e; ), is used to reconstruct the potential 
Vex). However, the coupled integral equations cannot be 
solved in closed form. Mosess employs power series expan-
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sions for T(k,k'), V(k,k'), and W(k); clearly an easier pro­
cedure for solving this problem is desirable. However, Mo­
ses's approach has been suggested for solving an inverse 
seismic problem in (Ref. 18). 

An alternative to these integral equation methods is a 
differential or layer stripping approach. Such an approach 
was used to derive a layer stripping algorithm in (Ref. 15). A 
different layer stripping algorithm, employing the Radon 
transform, is derived below. 

IV. A LAYER STRIPPING SOLUTION TO THE INVERSE 
SeA TTERING PROBLEM 

A layer stripping procedure recursively reconstructs the 
potential as the probing wave penetrates it. It is thus a differ­
ential procedure, in contrast to the integral equation proce­
dures described above. By taking full advantage of the inher­
ent structure of the inverse scattering problem, and of time 
causality, a layer stripping algorithm requires significantly 
less computation to reconstruct a scattering potential than 
the above methods. This is important in a three-dimensional 
inverse problem, since the number of points to be recon­
structed in a discretized potential increases as the cube of the 
number of discrete points in a single dimension. 

The essence of a layer stripping procedure is to differen­
tially reconstruct the Radon transform of V( x) from the 
jump in the scattered field at the wave front, and then use 
this reconstructed slice of Vex) to propagate the wave front 
and scattered field differentially further. The jump in the 
scattered field at the new location of the wave front yields 
another slice of Vex), which can be used to propagate the 
wave front and scattered field still further. This differential, 
layer-by-Iayer reconstruction contrasts with the batch oper­
ation of the integral equation approach. 

There are several advantages to using a layer stripping 
technique. Only one direction of probing is required, and 
only backscattered data in the near field is used. This makes 
the procedure more applicable to inverse seismic problems 
than the integral equation procedures, which require far­
field data and, in Newton's4 procedure, transmission data. 
The procedure is in principle exact, since all multiple reflec­
tion, refraction, and diffraction effects are accounted for. 
Approximation is inherent only in the discretization neces­
sary to implement the algorithm numerically, and data at all 
frequencies are used. However, the applicability of this ap­
proach to problems with bound states is not clear at present. 

The layer stripping concept has been used to obtain fast 
algorithm solutions for the one-dimensional Schrodinger 
equation inverse scattering problem by Corones et al.,19 
Symes,20 Bruckstein et al.,21 and Yagle and Levy.22 This ap­
proach has also been applied to various one-dimensional in­
verse seismic problems by Bube and Burridge,23 and Yagle 
and Levy.24-26 Similar approaches have been used by other 
authors. Results of computer runs of these one-dimensional 
problem algorithms have been encouraging (see Bube and 
Burridge23 and Yagle27 ). The numerical performance of the 
multidimensional problem algorithms proposed in Yagle 
and Levy l5 and this paper are unknown at present, but are 
subjects of current research. 

The layer stripping procedure given in this section 
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differs from that of Ref. 15 in the use of the Radon trans­
form. To use this transform, we operate in the time domain. 
Recall from Sec. III that an inverse Fourier transform of the 
Schrodinger equation results in the plasma wave equation 

(a - :t22 - V(X») u(x,t) = ° (4.1) 

and the scattered field Us (x,t,e;) is defined by 

u(x,t,e;) = 8(t - e; 0 x) + Us (x,t,e;). (4.2) 

Taking the Radon transform of ( 4.1) results in 

{
a

2 
a2} ail - at2 U(r,t,e) = ~{V(x)u(x,t)}, (4.3) 

where U( r,t,e) is the Radon transform of u(x,t,e;), and the 
parametric dependence on the direction of probing e; is no 
longer listed. Equation (4.3) may be written as the coupled 
first-order system 

(~ + ~) U(r,t,e) = Q(r,t,e), 
ar at 

( 4.4a) 

(~ - ~) Q(r,t,e) = ~{V(x)u(x,t)}. 
ar at 

(4.4b) 

The crucial step is to recognize that the scattered field 
Us (x,t,e;) is causal: until the probing impulsive plane wave 
8(t - e; 0 x) reaches x, the scattered field at x is zero. This 
can be written explicitly as 

u(x,t,e;) = 8(t - e; 0 x) + Us (x,t,e;) 1(t - e; 0 x). 
(4.5) 

Taking the Radon transform of (4.5) and considering only 
e = e; gives 

U( r,t,e = e;) = 8(t - r) + Us (r,t,e = e;) I (t - r). 
(4.6) 

A mental picture of the Radon transform will make the 
meaning of (4.6) clear: Since the Radon transform is being 
taken over planes parallel to the probing impulsive plane 
wave (e = e; ), it must be zero if t is less than r, since in this 
case the plane lies entirely with the region that the probing 
impulsive plane wave has not yet penetrated. From the form 
of (4.4a) it may be seen that Q( r,t,e = e;) is also causal. 
Specifically, 

Q( r,t,e = e;) = Qs (r,t,e = e;) I (t - r). (4.7) 

Inserting (4.5)-(4.7) into the coupled system (4.4) results 
in 

(~ + ~) Us ( r,t,e) = Qs ( r,t,e), 
ar at 

(4.Sa) 

(~ - ~) Qs(r,t,e) = ~{V(x)us(x,t)}, 
ar at 

(4.Sb) 

~{V(x)}= -2Qs(r,t=r,e), (4.Sc) 

where equating the coefficients of 8 (t - r) in (4.4b) has 
been used to obtain (4.Sc), and e = e; throughout. 

Equations (4. S) suggest a recursive procedure for recon­
structing V(x): Starting with known Us (r = O,t, e = e;) and 
Qs (r = O,t, e = e; ), propagate Eqs. (4.S) recursively in in­
creasing r, yielding ~{V(x)} recursively in r. Once 
~{V(x)} has been computed for allr, and for a hemisphere 
of angles of probing e;, then the inverse Radon transform 
(2.2) can be used to compute Vex) [only a hemisphere of 
incident directions is needed, since V( r, - e) = V( - r,e) ]. 
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However, there is a complication: The right side of (4.Sb) 
seems to require that Us (x,t) and Vex) be computed recur­
sively as well. Since it is assumed in (4.S) that e = eo there is 
insufficient information to compute these quantities, since 
the inverse Radon transform requires projection at all an­
gles, not just the angle of probing eo and it also requires 
knowledge for all positive r. 

The solution to this problem is to recognize that (4. Sb) 
requires not Us (x,t), but only ~{V(x)us (x,t)}. Writing 
this out gives 

1 r f a2 

~{V(x)us(x,t)}= - sff2Js> ar. Us(rl=elox,el) 
1 

a2 

x- V(r2=e2 o x,e2) 
a~ 

X8( r - e; 0 x)dx d 2e1d 2e2• (4.9) 
Note that this quantity is only required for e = e; and for a 
specific value of r. The integrand is nonzero only for x such 
that r = e; 0 x, and Us ( r,e) and V( r,e) are only required for 
r l = el 0 x and r 2 = e2 0 x. These three planes intersect in a 
point unless at least two of them coincide; virtually all of the 
contribution to the integral occurs when all three planes co­
incide (this point is made and discussed in Ref. 2S). Fortu­
nately, those values of Us (r,e) that make this contribution 
are precisely those available at each recursion: Us ( r = e; 0 x, 
e = e;). Similar comments hold for Vex); however, since 
Vex) is independent of the direction of probing e;, it can be 
completely reconstructed using the inverse Radon trans­
form (2.2) once the algorithm is complete. The second par­
tial derivatives required in the inverse Radon transforms can 
be implemented numerically. 

The procedure is initialized as follows. Assume without 
loss of generality that the support of V( x) is contained inside 
a sphere of radius R, and that the backscattered field 
Us (x,t,e; ) is measured on the plane R = - e; 0 x. Then it is 
possible to compute Us (r = - R,t,e;), and from this com­
pute Qs (r = R,t,e;), and then propagate the algorithm in 
increasing r from - R to R. Since the support of V( x) lies 
inside a sphere of radius R, ~{V(x)} is zero for r;;.R. 

The layer stripping procedure can be summarized as 
follows. (1) Initialize the procedure by computing 

Us(r= -R,t,e;) =~{us(r= -R,t,e=e;)} 
(4.10) 

from measurements of the backscattered field on the plane 
- R = e; 0 x, which by hypothesis lies outside the support 
of V(x). Compute Qs (r = - R,t,e;) from Rs (r = 
- R,t,e;) using (4.Sa) above. 

(2) Recursively compute Us (.) and Qs (.) in r using 
(4.S) above, for each eo yielding ~{V(x)} on the plane 
t = r = e; 0 x from (4. Sc) at each recursion. This is used 
along with Us ( .) in (4.9) to compute the right-hand side of 
( 4. Sb). The recursion in r runs from - R to R. 

(3) After the recursion is complete, an inverse Radon 
transform may be used to reconstruct V( x), since its support 
lies inside a sphere of radius R. 

Some comments are in order here. First, note that the 
recursive, layer-by-layer (in r) reconstruction of Vex) 
sharply contrasts with the batch reconstructions ofthe inte­
gral equation procedures. Newton's4 procedure first recon-
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structs the scattered field for all angles of probing all at once 
[note the coupling in ei in (3.7)]. Computationally, this is a 
tremendous undertaking. The layer stripping procedure de­
couples the computations for different angles of probing, so 
that they can be run concurrently on an array processor, and 
results from different angles are combined only in (2.2). 

Second, note that the simpler form of the layer stripping 
algorithm is a result of the exploitation of causality and the 
structure of the inverse scattering problem. By examining 
the jump in the scattered field at the wave front, which is 
measured by the first nonzero value of the causal quantity 
Qs (.), we avoid problems with multiple scattering events, 
which aids in recovering values of Vex). This structure is 
manifested by the Hankel structure of the kernel of the Mar­
chenko integral equation (3.7); but this structure can be 
exploited more directly by appealing to the physical nature 
of the problem. The concept of exploiting the jump in the 
scattered field at the wave front in order to determine the 
potential has been noted in Morawetz,29 and is the basis of 
the miracle equation of Newton4 [Eq. (3.10) above] and the 
fundamental identity of Rose et al. 9 This is discussed in more 
detail below. 

Finally, note that the layer stripping algorithm uses only 
near-field, backscattered data, unlike the integral equation 
procedures. This makes it more suitable for solving inverse 
seismic problems, since for these problems data are mea­
sured in the near field and transmission data are not avail­
able. In Yagle and Levy, IS a layer stripping algorithm is ap­
plied to an inverse seismic problem formulated in Coen et 
a/. I The issue of overdetermination arising in Newton's pro­
cedure also does not arise in the present procedure since only 
backscattered data are used. 

V. INTEGRAL EQUATION METHODS AND THE RADON 
TRANSFORM 

In this section it is shown that the same basic equations 
that led to the layer stripping procedure in Sec. IV also lead 
to the integral equation procedures of Moses and Newton 
described in Sec. III. This shows that the layer stripping and 
integral equation approaches are related to each other. Simi­
lar connections between layer stripping and integral equa­
tion approaches were demonstrated for the one-dimensional 
inverse problem in Bruckstein et aUI It is also demonstrated 
in this section that basic Born approximation results may be 
derived easily from all three methods by employing a single 
scattering approximation. The results of this section are not 
intended to be rigorous derivations; they are heuristic deri­
vations that illustrate why the equations have the forms they 
have. They are intended to aid in understanding and inter­
preting the various inverse problem solution procedures. 

A. The integral equation procedure of Moses 

In Moses,S T(k',k) is defined as [Eq. (5.12) in Ref. 5] 

T(k',k) = f e-ik'xV(x)u(x,k)dx, (5.1) 

where k = kei, so that u(x,k) = u(x,k,ei ). Therefore, 
T(k',k) can be interpreted as a generalized scattering ampli­
tude [Eq. (5.1) reduces to the definition (3.4) of scattering 
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amplitude if Ikl = Ik'I]. In addition, if we write k = Iklei 
= kei and k' = Ik'ies = k 'es' and extend k and k' to nega­
tive values by wntmg k = ( - k) ( - ei ) and 
k' = ( - k ') ( - es ), then we may regard T(k',k) as the 
double Fourier transform of ~{V(x)u(x,t,ei )}: 

T(k',k) = Y Y{~{V(x)u(x,t,ei)}} 

= f f f V(x)u(x,t,ei )8( r - es • x) 

xe - ikte - ik'r dx dt dr. (5.2) 

Using this observation, taking the double Fourier transform 
of the Radon transform (4.3) of the plasma wave equation 
(4.1) gives 

(k 2 - k '2)u(k',k) = T(k',k), (5.3) 

which leads to 

(5.4 ) 

where y( . ) is defined by (3.15). In Moses5 (5.4) was derived 
directly from the definition (3.4) of the scattering ampli­
tude, but this lends no insight into why (5.3) has the form it 
does, whereas the present derivation shows that (5.3) is a 
direct consequence of the application of the Radon trans­
form to the plasma wave equation. Multiplying the trivial 
definition (4.2) of the scattered field Us (.) by Vex) and tak­
ing the double Fourier transform from t to k and x to 
k' = k 'es (recall es = x/lxl) results in 

T(k',k) = V(k',k) + f V(k',k")us(k",k)dk" 

= V(k',k) + f V(k',k") 

xy(k 2 - k "2)T(k",k)dk", (5.5) 

where V(k',k) is defined by 

V(k',k) = f V(x)ei(k-k')xdx, (5.6) 

and (5.4) has been used. Note that (5.5) is the same as 
(3.11), the first of the coupled integral equations of Moses's 
procedure. 

The other equations of Moses's procedure may be de­
rived using the generalized Radon transform (2.6) and a 
Fourier transform Y that takes time t into k", where 
k" = k "e and k " is extended to negative values as before. We 
may write 

V(x)e-1k'X 

= (y~)-I(Y~){V(x)e-lk'x} 

= (y~)-I{T(k',k")} 

= ( (00 T(k',k")u*(x,k")k,,2d 2edk" 
JS2 Jo 

= f T(k',k")u*(x,k")dk" 

and a Fourier transform taking x into k results in 

V(k',k) = f T(k',k")u*(k,k")dk". 
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Taking a double Fourier transform of (4.2). inserting into 
(5.8), and setting k' = - k results in 

W(k) = V( - k,k) = T( - k,k) 

+ J T( - k,k")y*(k"2 - k 2 )T*(k,k")dk". 

(5.9) 

Using (3.14), T( - k,k) can be obtained from the back­
scattering amplitudeA(k, - e,e) for k>O. For k<,O, replace 
k with - k in (5.9). This equation, combined with (5.9), 
gives (3.12), the second of Moses's equations. The last of the 
coupled integral equations (3.13) follows immediately from 
the definition of W(k) in (5.9). 

Thus it may be seen that the coupled integral equations 
(3.11 )-( 3.13) of Moses5 may be interpreted as merely var­
ious Fourier and Radon transforms of elementary equations 
like ( 4.1) and ( 4.2). Note that at no point in the above deri­
vations was time causality used. Indeed, this solution proce­
dure does not exploit the structure of the inverse scattering 
problem at all. This is why the layer stripping algorithm, 
which does exploit this structure, is simpler. 

B. The Integral eqoation procedure of Newton 

The generalized Radon transform may also be used to 
derive Newton's Marchenko integral equation (3.7). Let 
u+ (x,l,e;) be a solution of the Schrodinger equation (3.1) 
with an outgoing radiation condition, and let u - (x,t,e; ) be a 
solution with an incoming radiation condition. By reversing 
time we have that 

u- (x,t,e;) = u+ (x, - t, - ej ). (5.10) 

Consider 

~{u+(x,t,e;) - u-(x,t,e;)} 

J u-(y,l',es )(u+(y,t,e;) - u-(y,t,e;»)dy. (5.11) 

We show first that this quantity can only depend on the 
time difference t - 1'. To do this, we apply a double Fourier 
transform taking t into k and l' into k ' to the right side of 
(5.11). The result is shown to be the product of some func­
tion and 8(k + k '). Since 

Y- 1(Y- 1{f(k)8(k + k ')}} =/(t -1'), (5.12) 

this will demonstrate that the right side of (5.11) depends 
only on the difference t - 1'. 

Proceeding as discussed above, the double Fourier 
transform of (5.11) is 

Y{Y( ~{u+ - u-}}} 

J u- (y,k I,e. )(u+ (y,k,ej ) - u- (y,k,ej ) )dy. 

(5.13 ) 

We know that u+(y,k,e;) and u-(y,k,e;) are related by 
some scattering operator S by4 

u+(y,k,e j ) =u-(y,k,e;)S, (5.14) 

where the application of the operator S has the form4 

u+(y,k,e;) = f u-(y,k,e)S(k,e,ej )d 2e. (5.15) 
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Note that only the existence of the operator S is being used 
here; nothing need be known about it except that its inverse 
operatorS- 1 also exists. Using (5.14) in (5.13) along with 
the double Fourier transform of (5.10) results in 

Y{Y(~{u+ - u-})} 

= J u+*(y,k',-es)u+(y,k,ej)(I-S l)dy 

=8(kej +k'es )(l-S-I), (5.16) 

where I is the identity operator and the last equality follows 
from the completeness property of the solutions 
u+ (y,k,e; ).8,9 Equation (5.16) has the form of the left side 
of (5.12); hence (5.11) depends only on t - 1'. In point of 
fact we have4 

S 1= (k 121Ti)A, (5.17) 

where A is the scattering amplitude operator defined similar­
ly to (5.15), and S is Hermitian. Although these facts are not 
used here, they explain the use of u + - U - and the presence 
of R (t,es ,e j ) below. 

Next, we evaluate (5.11) using this time invariance 
property. Without loss of generality, we may let t and l' ap­
proach infinity. Then the field in the vicinity of the scatterer 
will have decayed to zero, and virtually all ofthe contribu­
tion to the integral (5.11) will be in the far field. The incom­
ing wave u- (y,l',es ) is simply the probing plane wave 
8( l' - es • y), and the outgoing wave is given by (3.6). In­
serting these into (5.11), defining ey =yllyl, and noting 
that dy lyl2 d Iyl d 2ey gives 

~{u+(x,t,e;) - u-(x,t,e;)} 

(5.18 ) 

The final equality in (5.18) is a result ofletting 1',lyl---+oo: 
the scattered field is significant only in the vicinity of the 
wave front l' = Iyl (the speed of propagation is unity) so 
that the only contribution to the integral occurs for 
1'1lyl = 1. Note that the upper limit at the end of (5.18) 
results from the causality of R ( . ) . 

Taking an inverse generalized Radon transform of both 
sides results in 
u+ (x,t,ej ) - u- (x,t,e;) 

= (8~) l,f:~ u-(x,l',es ) :; 

X f-TR(t 1'-lyl,e.,e;)dlyld 2es 

= (~) f f"" U-(x,l',es ).!.... 
811 JS2 - "" at 

xR (t - 1',e.,e; )dl' d 2es ' (5.19) 

which is (4.16) in Ref. 9. Using (3.8) and (5.10) in (5.19), 
and noting that u+ (x,t,e;) iszerofort<,ej • x yields the Mar-
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chenko integral equation (3.7). Thus this integral equation 
is essentially an inverse generalized Radon transform. This 
interpretation of the Marchenko integral equation differs 
greatly from the functional analysis derivation in Newton4 

and Rose et al.,9 and the representation theorem derivation 
in Rose et al. 30 

To recover the potential from the scattered field, we 
simply insert (4.5), which expresses the causality of the scat­
tered field, into the plasma wave equation (4.1). Equating 
the coefficient of 8 (t - ej • x) to zero gives the miracle equa­
tion (3.10), since (alat)us(x,t,e j ) does not jump at the 
wave front. In Rose et al.9 (3.10) is called thefundamental 
identity, and it is pointed out that this equation and the mira­
cle equation are identical. An inverse Radon transform of 
( 4. 8c), from the layer stripping algorithm, also gives this 
equation. In all three cases, this equation is used to recover 
the potential from the jump in the scattered field at the wave 
front. However, the methods used to recover the scattered 
field itself differ widely. 

Solving the Marchenko integral equation (3.7) is very 
difficult, due to the coupling between the Us (x,t,e j ) in ej -

it is necessary to solve for all of the scattered fields, 
due to probings in all directions, in one huge batch 
operation. The reason for this can be found by noting from 
(5.2) that knowledge of the complete Radon transform of 
V(x)u (x,t,e j ) is equivalent to knowledge of the generalized 
scattering amplitude T(k,k'). However, this quantity is 
known only for Ikl = Ik'l, so that the scattering amplitude 
for one direction of probing ej is not sufficient to reconstruct 
the scattered field for that ej • It is necessary to utilize the 
scattering amplitude for all ej to reconstruct the scattered 
field for any ej • 

C. The Born approximation 

The (first) Born approximation is a single scattering ap­
proximation that greatly simplifies the solution to the in­
verse scattering problem. It consists of approximating the 
total wave field u(x,t) inside the support of V(x) by the 
probing impulse 8(t - ej • x) alone-the scattered field 
Us (x,t) is neglected. This amounts to neglecting all multiple 
scattering events, an assumption that is reasonable for weak 
potentials or large values of k. Applying this approximation 
to the definition (3.4) of scattering amplitude and taking an 
inverse Fourier transform from k to t yields 

f V(x)8(t - (es - ej ) • x)dx 

=~{V(x)}le=(e,-ei) = -RB(t,eS,e j ), (5.20) 

where RB ( . ) is the impulse response in the Born approxima­
tion. Thus the potential V(x) can be recovered by an inverse 
Radon transform of the impulse response. 

It is elucidating to note how the three exact methods 
discussed in this paper all reduce to this result when a single 
scattering approximation is imposed on each of them. This 
illustrates where multiple scattering events are being ac­
counted for in each method, and thus further illuminates 
their operation. 
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D. Moses's integral equation procedure 

In Moses's procedure the second term on the right side 
of (3.12) accounts for multiple scattering events.To see this, 
note that ifthis term is neglected (3.12) reduces to 

W(k) = W(k,e;) = f V(x)e - 2;ke ix dx 

= -b(k,ej ) = -AB(k,-ej,ej ) (5.21) 

and an inverse Fourier transform from k to t (with k ex­
tended to negative values in the usual way) results in (5.20) 
with es = - ej • Note that this is sufficient information to 
invert the Radon transform; backscattered data alone suf­
fices. 

E. Newton's integral equation procedure 

The Born approximation applied to Newton's proce­
dure amounts to neglecting the first term in the Marchenko 
integral equation (3.7). This leaves 

Us (x,t,e;) = - ~ f.!i R B(t - es • x,e"e;)d zes' 
81T dt 

(5.22) 

Applying the miracle equation (3.10), which we write here 
as 

V(x) = - 2e; • VUs (x,t = ej • x,e;) 

a + 2 - Us (x,t = ej • x,e;) 
at 

(recall that the second term is zero) results in (5.23 ) 

1 f az 
V(x) = - - -

8"r at Z 

XRB(t= (e; -es)x,es,e;)le; -eslzdzes 

= .9P- 1{ - R B(t,es,e; - es )} (5.24) 

and a Radon transform of both sides results in (5.20). 
F. Layer stripping procedure 

In the layer stripping procedure the coupling in the sys­
tem of equations (4.8) accounts for multiple scattering 
events. To see this, neglect this coupling, so that the algo­
rithm becomes simply (4. 8c), backpropagated to the far 
field as 

~{V(x)} = - 2Qs ('T,t = 'T,e) 

= -2Qs( -R,t=2'T+R,e). (5.25) 

Taking the Radon transform of (3.6) and utilizing the defin­
ition (4.8a) of Qs ( • ) in terms of Us ( • ) yields (5.20). 
VI. CONCLUSION 

A layer stripping algorithm for solving Schr6dinger 
equation inverse scattering problems has been proposed. 
This algorithm is differential in nature, in contrast to the 
other integral equation procedures discussed. By exploiting 
the inherent structure of the inverse scattering problem 
(time causality), this algorithm appears to require much less 
computation time than the integral equation procedures, 
which reconstruct the potential in one huge batch operation 
without taking advantage of the structure of the problem. In 
addition, this algorithm requires near-field, backscattered 
data, making it more suitable for inverse seismic problems 
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and other situations in which transmission data are not 
available. 

The proposed algorithm differs from that of Yagle and 
Levyl5 in its use of the Radon transform. While this makes 
the reconstruction of V(x) more complicated, it also simpli­
fies the propagation of the scattered field, since the trans­
verse Laplacian required at each step of the algorithm in Ref. 
15 is no longer required. Both algorithms are in principle 
exact, with approximation inherent only in the discretiza-
tion needed to implement them. . 

A significant consequence of the use of the Radon trans­
form in this algorithm is that it made direct mathematical 
comparison between the layer stripping and integral equa­
tion procedures possible, which was not the case in Ref. 15. 
Indeed, the integral equation procedures of Newton and 
Moses were derived heuristically using the Radon transform 
and the generalized Radon transform. In addition, it was 
shown how all three inversion procedures reduce to the Born 
approximation when single scattering approximations are 
made. This showed the important role these transforms play 
in both exact and approximate procedures. 

Considerable work remains to be done in making the 
layer stripping procedure a practical method for solving in­
verse scattering problems. Their numerical performance on 
synthetic data is a subject of current research. Other topics 
on which research is needed include numerical performance 
on noisy data, improved ways of implementing Eq. (4.9), 
and investigation of the applicability of this procedure to 
problems with bound states. 
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A test for the Hawking definition of mass is given in a Tolman-Bondi model that asymptotically 
approaches the open Friedmann universe. An expanding universe filled with dustlike matter of 
zero pressure is considered. The matter distribution is spherically symmetric but 
nonhomogeneous. With appropriate boundary conditions, the calculation yields a finite and 
nonzero value for the Hawking mass, measured as a deviation from a "renormalized" zero mass in 
the unperturbed Friedmann model. These boundary conditions are more restrictive than those 
found for a model with gravitational radiation. 

I. INTRODUCTION 

There is no well defined gravitational energy density in 
general relativity. Gravitational energy cannot be localized 
and there does not exist a stress-energy tensor for the gravi­
tational field. The total energy of a gravitational system 
therefore cannot be expressed as a simple integral over a 
spacelike three-surface of a local energy density. 

For an isolated system in general relativity, i.e., an 
asymptotically flat space-time, there is a well defined total 
energy of the system. By asymptotic flatness we mean that 
the curvature vanishes both at large spacelike distances and 
at large null distances from the source. I The Arnowitt­
Oeser-Misner (ADM) mass2 is defined asymptotically at 
spatial infinity and represents the total energy of the system. 
At null infinity the asymptotically defined Bondi mass3 rep­
resents the remaining energy of the system at some retarded 
time u after radiation has been emitted. Thus for a radiating 
system the Bondi mass is a decreasing function of u and is 
equal to the ADM mass in the past limit U-+ - 00 at future 
null infinity, f+ (see Ref. 4). 

Hawking has provided a definition of mass at f+ in a 
space-time that is asymptotically an open Friedmann mod­
el. 5 We have reason to assume that our universe is described 
by one of the Friedmann models, and current observations 
indicate that we live in an open universe.6 Hawking defined a 
quantity M that can be divided into two pieces MI and M2, 

where MI is infinite and M2 is zero in the unperturbed open 
Friedmann model. He then considered outgoing gravita­
tional radiation from a bounded source in a model that 
asymptotically approaches that of the open Friedmann mod­
el. It was shown that the piece M2, which is vanishing in the 
background metric, might be interpreted as the total mass of 
the source and the disturbance. In asymptotically flat space 
the Hawking definition of mass agrees with the Bondi mass. 
Hawking also showed that M2 obeys a conservation law sim­
ilar to that of the Bondi mass in asymptotically flat space. 

In this paper we shall test M 2 as a definition of mass in a 
model that asymptotically goes over to the open Friedmann 
universe. We shall do so by considering a spherically sym­
metric, not necessarily homogeneous, model of a universe 
filled with dustlike matter. Such models are commonly 
called Tolman-Bondi models in the literature.7 If the falloff 
behavior of the matter fields is chosen such that the effective 
gravitational mass gets a constant added to it asymptotical-

ly, we can show that M2 gives a finite and nonzero mass of 
the disturbance, as measured from the unperturbed Fried­
mann model. 

II. THE HAWKING MASS 

We employ the Newman-Penrose formalism where 
{la,na,ma,ma} is a tetrad of null vectors.s The vectors satisfy 
the orthonormality relations 

lala = nana = mama = mama = 0, 

lana = - mama = 1, lama = nama = 0, 

and, as a consequence of these, 

g"b = IOnb + nOl b _ mamb _ mambo 

(2.1) 

(2.2) 

The vector I a is taken to be orthogonal to a family of null 
hypersurfaces designated by u = const, that is, la = u;a' An 
affine parameter r along the null geodesics in the surfaces 
u = const is introduced such that r;a I a = 1. Since I a is null it 
is also a tangent vector to these null geodesics and we have 

(2.3 ) 

We define the vector na to be the ingoing null vector orthogo­
nal to the two-surfaces of constant u and r. The vectors ma 

and mO are complex conjugate null vectors that lie in these 
two-surfaces. 

Hawking defined the quantity5 

M(S) 

= (41T) - 3I2(f dS ) 112 f ( - '1'2 - O"A. + <1>11 + A)dS, 

(2.4) 

where S is a spacelike two-sphere of constant u and r. The 
quantities in the integrand are 

'I' - IC ([onb[cnd _[onbmcmd ) 2--2abcd ' 

0" = la;bmamb, A. = - no;bmomb, (2.5) 

<1>11 = - !Rab (Ianb + mOmb), A = R 124, 

where Cabcd is the Weyl tensor. M(S) is interpreted as the 
total mass of the system in the limit when the two-sphere 
becomes infinitely large. The total mass is therefore 

M(S) = lim M(S). (2.6) 
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In reality M(S) is a time component of the total four-mo­
mentum of the system but the quantity gives mass because 
the three-momentum is zero in the asymptotic rest frame 
used. We may split M(S) into two pieces Ml and M2 so that 

Ml(S) = !~~(41r) -3/2(J dS )112 J (~11 + A)dS, 

(2.7) 

M 2(S) = !~~ (41T) - 3/2(J dS )112 J ( -'112 - (TA)dS. 

In the next section we evaluate these quantities in the unper­
turbed Friedmann model. We shall find that the quantity M2 
is the interesting one as a candidate for mass. We call M2 the 
Hawking mass. In Sec. V, we calculate the Hawking mass in 
a Tolman-Bondi model that asymptotically approaches the 
open Friedmann universe. 

III. THE UNDISTURBED FRIEDMANN MODEL 

The metric of an open Friedmann model can be written9 

ds2 = D,2(1]) [d1]2 - dR 2 - sinh2 R 

X(d0 2+sin20dip2)], (3.1) 

where the scale factor 0(1]) as a function of the conformal 
time 1] is 

0(1]) = A (cosh 1] - 1), A >0. (3.2) 

We shall assume a universe filled with dustlike matter of zero 
pressure. The stress-energy tensor is that of a perfect fiuid at 
rest relative to the above coordinates. It is given by 

Tab =PUaUb' (3.3) 

where p is the mass-energy density of the matter and Ua its 
velocity. The four-velocity is normalized by Ua u

a = 1 and, 
in the comoving coordinate system, 

Ua = 01];a' (3.4) 

The evolution of the universe is determined by the Ein­
stein equations 

Rab - !gabR = - 81TTab , (3.5) 

from which we find that 41rp = 3AO- 3
• We also have 

R = 81TP, which yields 

A = lAO-3 (3.6) 

in the undisturbed Friedmann metric. Since the metric is 
isotropic, the Ricci tensor has only two independent compo­
nents. These are taken to be A and ~()()' where 

~()() = - !Rab / a/ b. (3.7) 

It is readily obtained that ~()() = 3AO- s. We shall assume 
here and in the rest of this paper that the null tetrad is intro­
duced along spherically symmetric null cones. With this 
choice it follows that ~11 = 3A. 

We introduce a null coordinate U = 1] - Rand stereo­
graphic coordinates x 3 , X 4 such that the metric may be ex­
pressed as 

ds2 = 02(1]} [ - du2 + 2 du d1] 

- sinh2(1] - u)Q -2(dx/ + dx/)], (3.8) 

where 
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Q = (1 + !(x/ + xl»). (3.9) 

The affine parameter r can be calculated from Eq. (2.3), 
which gives 

r =A 2[! sinh 21] - 2 sinh 1] + ~1]] (3.10) 

in a coordinate system where the origin of the affine param­
eter is at 1] = 0. In these coordinates surfaces of constant r 
are surfaces of constant 1]. 

We now calculate the quantities given by Eq. (2.7) in 
the undisturbed Friedmann metric. Because dS - 0 4 (1]), we 
find that 

(3.11) 
r-+co 

The metric (3.1 ) is conformally fiat and therefore '112 is zero. 
The complex shear (T vanishes because of spherical symme­
try and we find 

M2 (S) = 0. (3.12) 

So the piece Ml of the total mass diverges while the piece M2 
vanishes in the unperturbed Friedmann model. We may "re­
normalize" this mass by discarding the infinite contribution 
from MI' As Hawking suggested, the piece M2 may then be a 
candidate for mass in a model that asymptotically ap­
proaches the open Friedmann model. We shall test this con­
jecture for a dust-filled Friedmann universe with a nonho­
mogeneous distribution of matter. 

IV. SPHERICALLY SYMMETRIC EXPANDING 
UNIVERSE 

We consider a spherically symmetric universe filled 
with dustlike matter of mass density p (see Ref. 10). The 
matter distribution is not necessarily homogeneous but the 
pressure is assumed to be zero. The spherical symmetry al­
lows us to write the metric as 

ds2 = dt 2 _ e2a dR 2 - ~(dO 2 + sin2 0 dip 2), (4.1) 

where a and r are arbitrary functions of Rand t. We use a 
comoving coordinate system where the four-velocity ua has 
components (1,0,0,0). From the Einstein equations we ob­
tain the following equations: 

e2a = r'2/[1 +2E(R)], (4.2) 

!r-m(R)lr=E(R), (4.3) 

41Tp = m'lr'~, (4.4) 

where E(R) and m (R) are arbitrary functions of integra­
tion. The prime denotes the partial derivative with respect to 
R, and the dot denotes the partial derivative with respect to t. 
The function meR) plays the role of an effective gravita­
tional mass in Eq. (4.3), which has the same form as the 
Newtonian energy equation. From Eq. (4.4) we find that 

meR) = 41T foR p~r' dR, (4.5) 

which can be interpreted as the total amount of mass-energy 
interior to a shell of matter with comoving radius R (see Ref. 
11). The function E(R) represents the total energy per unit 
mass of a shell of matter at radial coordinate R. Taking the 
initial conditions to be such that r> 0, we notice that the 
universe will expand indefinitely if E(R) is positive for all R. 
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If E(R) is negative for some values of R, the radial velocity r 
will become zero for r - mlE, and the corresponding 
shells of matter will start to recollapse. We shall in the fol­
lowing assume that E(R) > 0, for all values of R. In parame­
tric form the solution to Eq. (4.3) may then be written 

t = (ml(2E)3/2)(sinh 1] -1]), 

r = (m12E)(cosh 1] 1). 

If we take 

(4.6) 

m(R)=Asinh3 R, E(R)=!sinh2R, (4.7) 

we obtain the familiar open Friedmann model. In that case 
the parameter 1] simply denotes the conformal time coordi­
nate. 

We now let 

meR) = m(R)(1 + feR»), 

E(R) =E(R)(l +g(R»), 
(4.8) 

where the functions f(R), g(R )-0 as R ~ 00. This yields a 
spherically symmetric model that asymptotically ap­
proaches the open Friedmann model at large radial distances 
R. The crucial point is how fast it approaches the undis­
turbed Friedmann model. We determine the asymptotic fall­
off behavior by requiring that 

m(R)~m(R) + mo, as R~oo, (4.9) 

where mo is a constant. This leads us to a class of functions 
f(R) with an asymptotic behavior as R~oo: 

f(R)-C1e- 3R
, (4.10) 

where C1 is a positive constant. This yields 

mo = AC1A. (4.11) 

Similarly, we letg(R) represent a class off unctions with an 
asymptotic behavior at large radial distances: 

g(R)_C2e- 3R , (4.12) 

where C2 is positive. This choice gives 

E(R)~E(R), as R-oo. (4.13 ) 

In order to have a constant mass density near the origin we 
also require thatf-const and g-const as R-o. The solu­
tion (4.6) becomes 

t = (1 + f - ~)A(sinh 1] -1]), 
(4.14 ) 

r = sinh R(1 + f - g)O(1]), 
in the asymptotic limit R -+ 00. To first order in! and g the 
metric then takes the form 

ds2 = 0 2 (1])[ (1 + 2h)d1]2 - 6hA (sinh 1] -1])0- 1 d1] dR 

- (1 - 4h - 3g + 6hA 2 sinh 1] 

X (sinh 1] -1])0-2)dR z 

- sinh2 R (1 + 2h + g)(dO 2 + sin2 0 d<p 2)], 

(4.15) 
where 

h f-~. ( 4.16) 

The mass density is given by 

41Tp = 3AO- 3 [1 - 3hA 2 sinh 1] (sinh 1] -1])0-2 

+ 6e 2Rh (A 2 sinh 1] (sinh 1] -1] )0-2 
- ~)] 

(4.17) 
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at large radial distances. 
We now realize that there is a difficulty with the phys­

ical interpretation of this expression. If for a moment we let 
Cz = 0, the leading-order term of the mass density perturba­
tion yields a negative contribution top. However, physically 
we have added mass to the model since m (R) is greater than 
the background value meR) (CI >0). We also notice from 
Eq. (4.14) that we have an ambiguity in the choice of time 
slicing of the space-time since surfaces of constant 1] no long­
er are the same as surfaces of constant t, the proper time. The 
difficulty arises because the value of the mass density pertur­
bation changes with different time slicings of space-time. 
Since p is nonzero and time dependent in the background 
space-time, the mass density perturbation is not invariant 
under infinitesimal coordinate transformations of the form 

(4.18 ) 

where Is"Tfl<l. By transforming back to a physically more 
sensible time coordinate, then. we may cure this difficulty 
with the interpretation of the density perturbation. 

A coordinate transformation of the sort (4.18) induces 
a gauge change in the metric perturbation r ab given by 

Yab-r:b = Yab - 2S(o;b)! (4.19) 

where S a means the four-vector field with components 
(s "Tf,0,0,0). We write the metric coefficients in the form 

gab = gab + rob' (4.20) 

where gab is the background metric. Indices of Yab are raised 
and lowered with gab and the semicolon means the covariant 
derivative relative to gab' We now require that the new met­
ric coefficient r:R vanishes under the coordinate transfor­
mation (4.18). This condition implies that the metric will 
not have any off-diagonal terms, corresponding to a time­
orthogonal coordinate system. We obtain 

S"Tf = hA(sinh 1] -1])0- 1
, (4.21) 

which by means of the gauge transformation (4.19) gives the 
new metric (dropping the asterisks) 

dS2 = 0 2 (1]) [d1]2 - (1 - 4h - 3g + 4hA 2 sinh 1] 

X (sinh 1] -1])0-2)dR 2 

- sinh2 R (1 + 2h + g - 2hA 2 sinh 1] 

X (sinh 1] -1])0-2)(d0 2 + sin2 0 d<p 2)]. 

(4.22) 
Since the time-time component of the metric perturbation is 
zero, this choice of gauge is also the same as the synchronous 
gauge. 12 It should be pointed out that surfaces of constant 11 
now coincide with surfaces of constant proper time t. 

The coordinate transformation (4.18) implies a gauge 
change of the mass density, 

P-+P*=P-P;"Tfs"Tf, (4.23) 

which by means of Eq. (4.21) gives the new mass density 
(again dropping the asterisk) 

41Tp= 3AO- 3 

X (1 + 6e 2Rh (A 2 sinh 1] (sinh 1] -1])0-2 -~)]. 
(4.24) 

In the new gauge the mass density perturbation is positive if 
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h > 0, in particular it is positive for C2 = O. Thus we may take 
the point of view that the new time coordinate is a more 
reasonable one, in the sense that the interpretation of the 
density perturbation becomes more physical. 

Bardeen has solved the problem of gauge ambiguity of 
energy density perturbations in a different framework. 13 
Bardeen's approach is based on constructing gauge-invar­
iant quantities which have inherent physical meaning and 
eliminate any gauge choice. Applied to our case of zero pres­
sure and comoving coordinates the gauge-invariant density 
perturbation amplitude may be written 

_ 8p 3£\-1 dn E--_-- ,1£ -Y1/R' 
P d7J 

(4.25) 

Computed in either of the coordinate systems given by Eqs. 
( 4.15) or (4.22) this gives 

E = 6e - 2Rh(A 2 sinh 71 (sinh 71 - 71 )n-2 
- j), (4.26) 

which is in agreement with the expression (4.24). In other 
words, in the comoving time-orthogonal gauge the mass 
density perturbation 8p can be exactly identified with the 
gauge-invariant quantity E; i.e., 8p = Ep. 

We finally introduce a null coordinate u given by 

u = 71 - R + p(7J)g(R) + q(7J)h(R), (4.27) 

where the functionsp(7J) and q(7J) are determined by de­
manding that Y1/1/ = 0 in the (u,7J,O,cP) coordinate system. 
Now taking the asymptotic limit u = const, 71--+00, we get 

p(7J) = -!, 
q(7J) = - !An-I log n + !OogA /2 + VAn-I, 

(4.28) 

where q (71) is expanded as a power series in n with terms of 
the form n- m logn n(m;>l, n=O,l). This yields a per­
turbed metric 

ds2 = n2( 71) [ - (1 - hAn- 1 logn + hAn- 1 (log A /2 + 1() )du2 + 2(1 - !hAn- 1 logn + !hAn- 1 (log A /2 + 1J »du d7J 

- sinh2 (7J - u)Q -2(1 + hAn-1 log n- hAn-1 (log A /2 + V)(dx; + dx~)], 

where x 3, X4 are stereographic coordinates and Q is given by 
Eq. (3.9). 

The task is now a purely computational one using this 
metric to find the perturbation in the Weyl tensor that will 
give us the mass of the density perturbation. We carry out 
this calculation in the next section. It should be added that 
the gauge ambiguity problem of the density perturbation dis­
cussed in this section is not relevant to the evaluation of the 
Hawking mass. M2 is a gauge-invariant quantity since it van­
ishes in the background space-time. The Hawking mass 
therefore does not change under a coordinate transforma­
tion and is unambiguously defined for the class of space­
times given by Eq. (4.29). 

v. CALCULATION 

We compute the quantity M2 given from Eq. (2.7) by 

M2(S) = !~~(41T)-3/2(fdS y/2 f (- "'2)dS. (5.1) 

The complex shear (J' vanishes because of spherical symme­
try. The Weyl tensor vanishes in the unperturbed Fried­
mann metric so from Eq. (2.5) we have 

"'2 = -! 8Cabcd (lanbfcnd _fanbmcmd), (5.2) 

where 8Cabcd is the perturbed Weyl tensor. It may be written 

8Cabcd = 8Rabcd - (ga[c8Rd]b + gb [d 8Rc]a ) 

- (Ya[CRd]b + Yb[dRC]a) 

+ ~8Rga[cgd]b + ~R(ga[cYd]b + gb[dYc]a)' 
(5.3) 

For our purposes it is sufficient to calculate the perturbation 
of the Riemann tensor 8Rabcd because one can show that all 
the terms involving the Ricci tensor or the scalar curvature 
fall off faster at null infinity. Generally, if Yab is the metric 
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(4.29) 

perturbation on a curved space-time, the perturbed Rie­
mann tensor is given by 

8Rabcd = 8Rabc eged + Rabc eYed' 

where 

(5.4) 

8R abc e = VIa (veyb]C - Vlcl Yb]e - Vb ]y/). (5.5) 

The contribution to "'2 from the second term in Eq. (5.4) 
falls off faster at f+ than the contribution from the first 
term and may be neglected. Similarly, the last term in Eq. 
(5.5) can be written 

VIa Vb ]Yc e = -! R abc dyde +! R abdeyc d (5,6) 

and gives terms with a faster falloff behavior. Therefore, to 
leading order in the asymptotic expansion we have 

(5.7) 

In our coordinates the tetrad vectors may be expressed ass 

fa = dx
a 

= n-28a 

dr 1/' 

na = 8~ + Un-28~ + X i8a 
i> i = 3,4, (5.8) 

m a =si8a
i, 

where 

u=!n2 +o(1), x i =0(n- 4
), 

Si = sKln-2 + 0(n- 3
). 

(5.9) 

This yields a leading-order contribution to "'2 given by 

"'2 = -! n-48C1/u1/u' (5.10) 

From Eq. (5.7) we obtain 

8C1/U1/U = V [1/ (Vlul Y ul11 - V I1/1 Y u]u ) = 2Anh, (5.11) 

which yields 

"'2 = -An- 3h. (5.12) 
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The function h is defined by Eq. (4.16) and may be ex­
pressed as 

h = Ce - 3R~Ce - 31/e3u, 

where 

C=CI-~CZ' 

(5.13) 

(5.14) 

We have here used the approximation u~1J - R of Eq. 
(4.27). Usingthate-1/~~Ao.-I we find 

IIJz = _! CA 4 e3u 0.-6 
8 ' 

(5.15 ) 

in the asymptotic limit u = const, 1J~ 00 • 

The coordinates X3 and x 4 are chosen so that the leading 
term in gij is a conformally flat metric. From Eq. (2.2) we 
have 

i j = - (t~jO + liOtjO) 0.-4 + 0(0.- 5
) 

= - 2PPOijo.-4 + 0(0.- 5 ), (5.16 ) 

where P( u,xi ) = t 30 = - it 40. To obtain agreement with 
the unperturbed metric (3.8) we take 

(5.17 ) 

where Q is given by Eq. (3.9). The surface area element dS is 
then 

dS = ! P -Z0.4 dX3 dx4 • 

Inserted into Eq. (5.1) this yields 

(5.18 ) 

Mz(S) = !~~ (81TA)-le - u0.6 J (-lIJz)P-Z dx3 dx4 

=ACA. ( 5.19) 

Thus we obtain a finite and nonzero value of the Hawking 
mass in the Tolman-Bondi model. We notice that the result 
is of similar form as Eq. (4.11) and thatMz agrees with m o if 
we let the constant Cz vanish. The discovery that the Hawk­
ing mass is sensitive not only to changes in the effective gra­
vitational mass m (R) but also to changes in the total energy 
ofa shell of matter E(R) is connected to the fact that meR) 
and E (R ) diverge in the open Friedmann model and that the 
infinite contributions have beeen "renormalized" away. 

VI. CONCLUSION 

In this paper we have computed the Hawking mass Mz 
in a Tolman-Bondi model that asymptotically approaches 
the open Friedmann universe. In the unperturbed Fried­
mann model, Mz vanishes and represents the "renormal­
ized" mass of the infinite total massM. SinceMz is finite and 
nonzero in the perturbed model, it seems reasonable to re­
gard the Hawking mass as representing the total mass of the 
disturbance. It can be shown that there is no contribution to 
MI due to the perturbation. 

We note that the expression (5.19) is independent of u, 
i.e., Mz is a constant and has the same value on any null 
hypersurface u = const. This is not surprising since there is 
no gravitational radiation in our model of spherical symme­
try. As discovered by Hawking,S in a system with gravita­
tional radiation M2 depends on u and obeys a conservation 
law similar to that of the Bondi mass in asymptotically flat 
space-time. 

It is interesting to notice that the function h (R) given by 
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Eq. (4.16) is the gauge-invariant perturbation amplitude of 
the functions meR) andE(R). We may write 

h = Om/iii - ~OE iE, (6.1) 

which is gauge invariant under the coordinate transforma­
tion 

(6.2) 

where It R 1<1. ByEqs. (5.1) and (5.12), the Hawking mass 
is proportional to this gauge-invariant quantity. Therefore, 
if the falloff behavior is such as given by Eqs. (4.10) and 
(4.12), Mz is proportional to both the change in the effective 
gravitational mass m(R) and the change in the total energy 
of a shell of matter E (R ) . 

From Eq. (4.26) the perturbation amplitude of the mass 
density is E - e - 2Rh at large radial distances. In the asymp­
totic limit u = const, 1J~00 this yields a perturbation in the 
mass density given by op_n- 8

• The boundary conditions 
are therefore such that 

(6.3) 

These boundary conditions are of one power higher in n - I 
than the ones that allow a general radiation field in the sys­
tem.5 This reflects the asymptotic behavior of a scalar per­
turbation as discussed in this paper, as opposed to a tensor 
perturbation due to gravitational waves. 14 

Finally, it should be pointed out that our calculation of 
the Hawking mass may also serve as a test for the definition 
of mass proposed by Penrose. IS While the Penrose mass is a 
candidate for a quasilocal mass, it can also be considered as a 
definition of mass at null infinity. For a spherically symmet­
ric space-time it c~ be shown that the Penrose mass agrees 
with the quantity M given by Hawking. 16 We may therefore 
"renormalize" the Penrose mass in a similar fashion to what 
we did to the total mass M. If we discard the diverging terms 
involving <1>11 and A, the "renormalized" Penrose mass at 
null infinity is given by 

M~en.) = lim (1/41T)( -IIJZ)(A3/41T)1I2, (6.4) 
r_oo 

where A = SdS is the surface area. This expression vanishes 
in the unperturbed open Friedmann universe. In the nonho­
mogeneous Tolman-Bondi model all we must compute is 
the asymptotic behavior of IIJ 2' which we already have done. 
Using the expression (5.15) and the area element (5.18), the 
"renormalized" Penrose mass completely agrees with the 
result (5.19) for the Hawking mass. 
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